We cannot measure the share which human action has had in augmenting the intensity of causes of mountain degradation, but we know that the clearing of the woods has, in some cases, produced within two or three generations, effects as blasting as those generally ascribed to geological convulsions, and has laid waste the face of the earth more hopelessly than if it had been buried by a current of lava or a shower of volcanic sand. Now torrents are forming every year in the Alps. Tradition, written records, and analogy concur to establish the belief that the ruin of most of the now desolate valleys in those mountains is to be ascribed to the same cause, and authentic descriptions of the irresistible force of the torrent show that, aided by frost and heat, it is adequate to level Mont Blanc and Monte Rosa themselves, unless new upheavals shall maintain their elevation.
It has been contended that all rivers which take their rise in mountains originated in torrents. These, it is said, have lowered the summits by gradual erosion, and, with the material thus derived, have formed shoals in the sea which once beat against the cliffs; then, by successive deposits, gradually raised them above the surface, and finally expanded them into broad plains traversed by gently flowing streams. If we could go back to earlier geological periods, we should find this theory often verified, and we cannot fail to see that the torrents go on at the present hour, depressing still lower the ridges of the Alps and the Apennines, raising still higher the plains of Lombardy and Provence, extending the coast still farther into the Adriatic and the Mediterranean, reducing the inclination of their own beds and the rapidity of their flow, and thus tending to become river-like in character.
There are cases where torrents cease their ravages of themselves, in consequence of some change in the condition of the basin where they originate, or of the face of the mountain at a higher level, while the plain or the sea below remains in substantially the same state as before. If a torrent rises in a small valley containing no great amount of earth and of disintegrated or loose rock, it may, in the course of a certain period, wash out all the transportable material, and if the valley is then left with solid walls, it will cease to furnish debris to be carried down by floods. If, in this state of things, a new channel be formed at an elevation above the head of the valley, it may divert a part, or even the whole of the rain water and melted snow which would otherwise have flowed into it, and the once furious torrent now sinks to the rank of a humble and harmless brooklet. "In traversing this department," says Surell, "one often sees, at the outlet of a gorge, a flattened hillock, with a fan-shaped outline and regular slopes; it is the bed of dejection of an ancient torrent. It sometimes requires long and careful study to detect the primitive form, masked as it is by groves of trees, by cultivated fields, and often by houses, but, when examined closely, and from different points of view, its characteristic figure manifestly appears, and its true history cannot be mistaken. Along the hillock flows a streamlet, issuing from the ravine, and quietly watering the fields. This was originally a torrent, and in the background may be discovered its mountain basin. Such extinguished torrents, if I may use the expression, are numerous."[234]
But for the intervention of man and domestic animals, these latter beneficent revolutions would occur more frequently, proceed more rapidly. The new scarped mountains, the hillocks of debris, the plains elevated by sand and gravel spread over them, the shores freshly formed by fluviatile deposits, would clothe themselves with shrubs and trees, the intensity of the causes of degradation would be diminished, and nature would thus regain her ancient equilibrium. But these processes, under ordinary circumstances, demand, not years, generations, but centuries;[235] and man, who even now finds scarce breathing room on this vast globe, cannot retire from the Old World to some yet undiscovered continent, and wait for the slow action of such causes to replace, by a new creation, the Eden he has wasted.
Mountain Slides.
I have said that the mountainous regions of the Atlantic States of the American Union are exposed to similar ravages, and I may add that there is, in some cases, reason to apprehend from the same cause even more appalling calamities than those which I have yet described. The slide in the Notch of the White Mountains, by which the Willey family lost their lives, is an instance of the sort I refer to, though I am not able to say that in this particular case, the slip of the earth and rock was produced by the denudation of the surface. It may have been occasioned by this cause, or by the construction of the road through the Notch, the excavations for which, perhaps, cut through the buttresses that supported the sloping strata above.
Not to speak of the fall of earth when the roots which held it together, and the bed of leaves and mould which sheltered it both from disintegrating frost and from sudden drenching and dissolution by heavy showers, are gone, it is easy to see that, in a climate with severe winters, the removal of the forest, and, consequently, of the soil it had contributed to form, might cause the displacement and descent of great masses of rock. The woods, the vegetable mould, and the soil beneath, protect the rocks they cover from the direct action of heat and cold, and from the expansion and contraction which accompany them. Most rocks, while covered with earth, contain a considerable quantity of water.[236] A fragment of rock pervaded with moisture cracks and splits, if thrown into a furnace, and sometimes with a loud detonation; and it is a familiar observation that the fire, in burning over newly cleared lands, breaks up and sometimes almost pulverizes the stones. This effect is due partly to the unequal expansion of the stone, partly to the action of heat on the water it contains in its pores. The sun, suddenly let in upon rock which had been covered with moist earth for centuries, produces more or less disintegration in the same way, and the stone is also exposed to chemical influences from which it was sheltered before. But in the climate of the United States as well as of the Alps, frost is a still more powerful agent in breaking up mountain masses. The soil that protects the lime and sand stone, the slate and the granite from the influence of the sun, also prevents the water which filters into their crevices and between their strata from freezing in the hardest winters, and the moisture descends, in a liquid form, until it escapes in springs, or passes off by deep subterranean channels. But when the ridges are laid bare, the water of the autumnal rains fills the minutest pores and veins and fissures and lines of separation of the rocks, then suddenly freezes, and bursts asunder huge, and apparently solid blocks of adamantine stone.[237] Where the strata are inclined at a considerable angle, the freezing of a thin film of water over a large interstratal area might occasion a slide that should cover miles with its ruins; and similar results might be produced by the simple hydrostatic pressure of a column of water, admitted by the removal of the covering of earth to flow into a crevice faster than it could escape through orifices below.
Earth or rather mountain slides, compared to which the catastrophe that buried the Willey family in New Hampshire was but a pinch of dust, have often occurred in the Swiss Italian, and French Alps. The land slip, which overwhelmed and covered to the depth of seventy feet, the town of Plurs in the valley of the Maira, on the night of the 4th of September, 1618, sparing not a soul of a population of 2,430 inhabitants, is one of the most memorable of these catastrophes, and the fall of the Rossberg or Rufiberg, which destroyed the little town of Goldau in Switzerland, and 450 of its people, on the 2d of September, 1806, is almost equally celebrated. In 1771, according to Wessely, the mountain peak Piz, near Alleghe in the province of Belluno, slipped into the bed of the Cordevole, a tributary of the Piave, destroying in its fall three hamlets and sixty lives. The rubbish filled the valley for a distance of nearly two miles, and, by damming up the waters of the Cordevole, formed a lake about three miles long, and a hundred and fifty feet deep, which still subsists, though reduced to half its original length by the wearing down of its outlet.[238]
On the 14th of February, 1855, the hill of Belmonte, a little below the parish of San Stefano, in Tuscany, slid into the valley of the Tiber, which consequently flooded the village to the depth of fifty feet, and was finally drained off by a tunnel. The mass of debris is stated to have been about 3,500 feet long, 1,000 wide, and not less than 600 high.[239]
Such displacements of earth and rocky strata rise to the magnitude of geological convulsions, but they are of so rare occurrence in countries still covered by the primitive forest, so common where the mountains have been stripped of their native covering, and, in many cases, so easily explicable by the drenching of incohesive earth from rain, or the free admission of water between the strata of rocks—both of which a coating of vegetation would have prevented—that we are justified in ascribing them for the most part to the same cause as that to which the destructive effects of mountain torrents are chiefly due—the felling of the woods.