The objections to the general adoption of the system of reservoirs are these: the expense of their construction and maintenance; the reduction of cultivable area by the amount of surface they must cover; the interruption they would occasion to free communication; the probability that they would soon be filled up with sediment, and the obvious fact that when full of earth or even water, they would no longer serve their principal purpose; the great danger to which they would expose the country below them in case of the bursting of their barriers;[359] the evil consequences they would occasion by prolonging the flow of inundations in proportion as they diminished their height; the injurious effects it is supposed they would produce upon the salubrity of the neighboring districts; and, lastly, the alleged impossibility of constructing artificial basins sufficient in capacity to prevent, or in any considerable measure to mitigate, the evils they are intended to guard against.

The last argument is more easily reduced to a numerical question than the others. The mean and extreme annual precipitation of all the basins where the construction of such works would be seriously proposed is already approximately known by meteorological tables, and the quantity of water, delivered by the greatest floods which have occurred within the memory of man, may be roughly estimated from their visible traces. From these elements, or from recorded observations, the capacity of the necessary reservoirs can be calculated. Let us take the case of the Ardèche. In the inundation of 1857, that river poured into the Rhone 1,305,000,000 cubic yards of water in three days. If we suppose that half this quantity might have been suffered to flow down its channel without inconvenience, we shall have about 650,000,000 cubic yards to provide for by reservoirs. The Ardèche and its principal affluent, the Chassezac, have, together, about twelve considerable tributaries rising near the crest of the mountains which bound the basin. If reservoirs of equal capacity were constructed upon all of them, each reservoir must be able to contain 54,000,000 cubic yards, or, in other words, must be equal to a lake 3,000 yards long, 1,000 yards wide, and 18 yards deep, and besides, in order to render any effectual service, the reservoirs must all have been empty at the commencement of the rains which produced the inundation.

Thus far, I have supposed the swelling of the waters to be uniform throughout the whole basin; but such was by no means the fact in the inundation of 1857, for the rise of the Chassezac, which is as large as the Ardèche proper, did not exceed the limits of ordinary floods, and the dangerous excess came solely from the headwaters of the latter stream. Hence reservoirs of double the capacity I have supposed would have been necessary upon the tributaries of that river, to prevent the injurious effects of the inundation. It is evident that the construction of reservoirs of such magnitude for such a purpose is financially, if not physically, impracticable, and when we take into account a point I have just suggested, namely, that the reservoirs must be empty at all times of apprehended flood, and, of course, their utility limited almost solely to the single object of preventing inundations, the total inapplicability of such a measure in this particular case becomes still more glaringly manifest.

Another not less conclusive fact is that the valleys of all the upland tributaries of the Ardèche descend so rapidly, and have so little lateral expansion, as to render the construction of capacious reservoirs in them quite impracticable. Indeed, engineers have found but two points in the whole basin suitable for that purpose, and the reservoirs admissible at these would have only a joint capacity of about 70,000,000 cubic yards, or less than one ninth part of what I suppose to be required. The case of the Ardèche is no doubt an extreme one, both in the topographical character of its basin and in its exposure to excessive rains; but all destructive inundations are, in a certain sense, extreme cases also, and this of the Ardèche serves to show that the construction of reservoirs is not by any means to be regarded as a universal panacea against floods.

Nor, on the other hand, is this measure to be summarily rejected. Nature has adopted it on a great scale, on both flanks of the Alps, and on a smaller, on those of the Adirondacks and lower chains, and in this as in many other instances, her processes may often be imitated with advantage. The validity of the remaining objections to the system under discussion depends on the topography, geology, and special climate of the regions where it is proposed to establish such reservoirs. Many upland streams present numerous points where none of these objections, except those of expense and of danger from the breaking of dams, could have any application. Reservoirs may be so constructed as to retain the entire precipitation of the heaviest thaws and rains, leaving only the ordinary quantity to flow along the channel; they may be raised to such a height as only partially to obstruct the surface drainage; or they may be provided with sluices by means of which their whole contents can be discharged in the dry season and a summer crop be grown upon the ground they cover at high water. The expediency of employing them and the mode of construction depend on local conditions, and no rules of universal applicability can be laid down on the subject.

It is remarkable that nations which we, in the false pride of our modern civilization, so generally regard as little less than barbarian, should have long preceded Christian Europe in the systematic employment of great artificial basins for the various purposes they are calculated to subserve. The ancient Peruvians built strong walls, of excellent workmanship, across the channels of the mountain sources of important streams, and the Arabs executed immense works of similar description, both in the great Arabian peninsula and in all the provinces of Spain which had the good fortune to fall under their sway. The Spaniards of the fifteenth and sixteenth centuries, who, in many points of true civilization and culture, were far inferior to the races they subdued, wantonly destroyed these noble monuments of social and political wisdom, or suffered them to perish, because they were too ignorant to appreciate their value, or too unskilful as practical engineers to be able to maintain them, and some of their most important territories were soon reduced to sterility and poverty in consequence.

Another method of preventing or diminishing the evils of inundation by torrents and mountain rivers, analogous to that employed for the drainage of lakes, consists in the permanent or occasional diversion of their surplus waters, or of their entire currents, from their natural courses, by tunnels or open channels cut through their banks. Nature, in many cases, resorts to a similar process. Most great rivers divide themselves into several arms in their lower course, and enter the sea by different mouths. There are also cases where rivers send off lateral branches to convey a part of their waters into the channel of other streams.[360] The most remarkable of these is the junction between the Amazon and the Orinoco by the natural canal of the Cassiquiare and the Rio Negro. In India, the Cambodja and the Menam are connected by the Anam; the Saluen and the Irawaddi by the Panlaun. There are similar examples, though on a much smaller scale, in Europe. The Torneå and the Calix rivers in Lapland communicate by the Tarando, and in Westphalia, the Else, an arm of the Haase, falls into the Weser.

The change of bed in rivers by gradual erosion of their banks is familiar to all, but instances of the sudden abandonment of a primitive channel are by no means wanting. At a period of unknown antiquity, the Ardèche pierced a tunnel 200 feet wide and 100 high, through a rock, and sent its whole current through it, deserting its former bed, which gradually filled up, though its course remained traceable. In the great inundation of 1827, the tunnel proved insufficient for the discharge of the water, and the river burst through the obstructions which had now choked up its ancient channel, and resumed its original course.[361]

It was probably such facts as these that suggested to ancient engineers the possibility of like artificial operations, and there are numerous instances of the execution of works for this purpose in very remote ages. The Bahr Jusef, the great stream which supplies the Fayoum with water from the Nile, has been supposed, by some writers, to be a natural channel; but both it and the Bahr el Wady are almost certainly artificial canals constructed to water that basin, to regulate the level of Lake Moeris, and possibly, also, to diminish the dangers resulting from excessive inundations of the Nile, by serving as waste-weirs to discharge a part of its surplus waters. Several of the seven ancient mouths of the Nile are believed to be artificial channels, and Herodotus even asserts that King Menes diverted the entire course of that river from the Libyan to the Arabian side of the valley. There are traces of an ancient river bed along the western mountains, which give some countenance to this statement. But it is much more probable that the works of Menes were designed rather to prevent a natural, than to produce an artificial, change in the channel of the river.

Two of the most celebrated cascades in Europe, those of the Teverone at Tivoli and of the Velino at Terni, owe, if not their existence, at least their position and character, to the diversion of their waters from their natural beds into new channels, in order to obviate the evils produced by their frequent floods. Remarkable works of the same sort have been executed in Switzerland, in very recent times. Until the year 1714, the Kander, which drains several large Alpine valleys, ran, for a considerable distance, parallel with the Lake of Thun, and a few miles below the city of that name emptied into the river Aar. It frequently flooded the flats along the lower part of its course, and it was determined to divert it into the Lake of Thun. For this purpose, two parallel tunnels were cut through the intervening rock, and the river turned into them. The violence of the current burst up the roof of the tunnels, and, in a very short time, wore the new channel down not less than one hundred feet, and even deepened the former bed at least fifty feet, for a distance of two or three miles above the tunnel. The lake was two hundred feet deep at the point where the river was conducted into it, but the gravel and sand carried down by the Kander has formed at its mouth a delta containing more than a hundred acres, which is still advancing at the rate of several yards a year. The Linth, which formerly sent its waters directly to the Lake of Zurich, and often produced very destructive inundations, was turned into the Wallensee about forty years ago, and in both these cases a great quantity of valuable land was rescued both from flood and from insalubrity.