Many fish hatcheries, both government and state, are engaged in artificially fertilizing millions of fish eggs of various species and protecting the young fry until they are of such size that they can take care of themselves, when they are placed in ponds or streams. This artificial fertilization is usually accomplished by first squeezing out the ripe eggs from a female into a pan of water; in a similar manner the milt or sperm cells are obtained, and poured over the eggs. The eggs are thus fertilized. They are then placed in receptacles supplied with running water and left to develop under favorable conditions. Shortly after the egg has segmented (divided into many cells) the embryo may be seen developing on one side of the egg. The rest of the egg is made up of food or yolk, and when the baby fish hatches it has for some time the yolk attached to its ventral surface. Eventually the food is absorbed into the body of the fish. The development of the fish is direct, the young fish becoming an adult without any great change in form. The young fry are kept under ideal conditions until later, when they are shipped, sometimes thousands of miles, to their new homes.

Early development of salmon. Natural size.

Note To Teacher.—It is suggested that in the spring term the frog be studied, but if animal biology be taken up during the fall term the fish only might be used.

the frog

Adaptations for Life.—The most common frog in the eastern part of the United States is the leopard frog. It is recognized by its greenish brown body with dark spots, each spot being outlined in a lighter-colored background. In spite of the apparent lack of harmony with their surroundings, their color appears to give almost perfect protection. In some species of frogs the color of the skin changes with the surroundings of the frog, another means of protection.

Adaptations for life in the water are numerous. The ovoid body, the head merging into the trunk, the slimy covering (for the frog is provided, like the fish, with mucus cells in the skin), and the powerful legs with webbed feet, are all evidences of the life which the frog leads.

Locomotion.—You will notice that the appendages have the same general position on the body and same number of parts as do your own (upper arm, forearm, and hand; thigh, shank, and foot, the latter much longer relatively than your own). Note that while the hand has four fingers, the foot has five toes, the latter connected by a web. In swimming the frog uses the stroke we all aim to make when we are learning to swim. Most of the energy is liberated from the powerful backward push of the hind legs, which in a resting position are held doubled up close to the body. On land, locomotion may be by hopping or crawling.

This diagram shows how the frog uses its tongue to catch insects.