Stages in the division of one cell to form two. Which part of the cell divides first? What seems to become of the chromosomes?

Cells of Various Sizes and Shapes.—Plant cells and animal cells are of very diverse shapes and sizes. There are cells so large that they can easily be seen with the unaided eye; for example, the root hairs of plants and eggs of some animals. On the other hand, cells may be so minute, as in the case of the plant cells named bacteria, that several million might be present in a few drops of milk. The forms of cells may be extremely varied in different tissues; they may assume the form of cubes, columns, spheres, flat plates, or may be extremely irregular in shape. One kind of tissue cell, found in man, has a body so small as to be quite invisible to the naked eye, although it has a prolongation several feet in length. Such are some of the cells of the nervous system of man and other large animals, as the ox, elephant, and whale.

Varying Sizes of Living Things.—Plant cells and animal cells may live alone, or they may form collections of cells. Some plants are so simple in structure as to be formed of only one kind of cells. Usually living organisms are composed of several groups of different kinds of cells. It is only necessary to call attention to the fact that such collections of cells may form organisms so tiny as to be barely visible to the eye; as, for instance, some of the small flowerless plants or many of the tiny animals living in fresh water or salt water. On the other hand, among animals, the bulk of the elephant and whale, and among plants the big trees of California, stand out as notable examples. The large plants and animals are made up of more, not necessarily larger, cells.

What Protoplasm can Do.—It responds to influences or stimulation from without its own substance. Both plants and animals are sensitive to touch or stimulation by light, heat or cold, certain chemical substances, gravity, and electricity. Green plants turn toward the source of light. Some animals are attracted to light and others repelled by it; the earthworm is an example of the latter. Protoplasm is thus said to be irritable.

Protoplasm has the power to contract and to move. Muscular movement is a familiar instance of this power. Movement may also take place in plants. Some plants fold up their leaves at night; others, like the sensitive plant, fold their leaflets when touched.

Protoplasm can form new living matter out of food. To do this, food materials must be absorbed into the cells of the living organism. To make protoplasm, it is evident that the same chemical elements must enter into the composition of the food substances as are found in living matter. The simplest plants and animals have this wonderful power as certainly developed as the most complex forms of life.

Protoplasm, be it in plant or animal, breathes and throws off waste materials. When a living thing does work oxygen unites with food in the body; the food is burned or oxidized and work is done by means of the energy released from the food. The waste materials are excreted or passed out. Plants and animals alike pass off the carbon dioxide which results from the oxidation of food and of parts of their own bodies. Animals eliminate wastes containing nitrogen through the skin and the kidneys.

Protoplasm can reproduce, that is, form other matter like itself. New plants are constantly appearing to take the places of those that die. The supply of living things upon the earth is not decreasing; reproduction is constantly taking place. In a general way it is possible to say that plants and animals reproduce in a very similar manner.

The Importance of Reproduction.—Reproduction is the final process that plants and animals are called upon to perform. Without the formation of new living things no progress would be possible on the earth. We have found that insects help flowering plants in this process. Let us now see exactly what happens when pollen is placed by the bee on the stigma of another flower of the same kind. To understand this process of reproduction in flowers, we must first study carefully pollen grains from the anther of some growing flower.