Less by Erosion in the Canyon Region. Now figure out for a few moments the results of these different erosive periods. Eleven thousand five hundred feet of Algonkian gone; a small amount of erosion in the Cambrian epoch, the depth of which is unknown; and then the great denudation of the Eocene period sweeping away upwards of fifteen thousand feet of strata, give us a total of twenty-six thousand five hundred feet that have totally disappeared from the Canyon region. A vertical mile is five thousand two hundred and eighty feet. Mount Washington is about six thousand five hundred feet above the sea,—a trifle higher than Mount Lowe, near Pasadena, California. Take off from this six thousand five hundred feet, say one thousand five hundred feet, for the level of the country at the base of these two mountains, and then imagine a region five times as high as both of them, covering an area of country of possibly thirteen thousand to fifteen thousand square miles, slowly planed off by the erosive forces of nature.
Formation of River Beds. How was it done? I have spoken of the peaks and islets that first emerged from the Eocene Sea, and received the rains. Down their slopes ran the earliest watercourses, first as rills, then as creeks, finally as rivers. The higher the peaks ascended, the more the accompanying land was lifted up, and therefore the longer and deeper became the rivers. The course of a river once established, it is exceedingly difficult to change it—hence the law that geologists call "the persistence of rivers." By and by, the uplifted country appeared as one vast area of river valleys, separated by stretches of plateau. Little by little, working by laws that are pretty well understood, the swift flowing avers cut downwards. When their velocity ceased, the widening of the river courses began, and progressed with greater rapidity, so that, in time, the divides that intervened between the rivers were worn away,—a process rudely shown in Fig. 5 A. B. C. and D. of plate on page 110.
The Formation of the Canyon. Now, in imagination, let us hark back to the day when this plateau was in the condition thus described. Nearly everything in the way of strata has been planed down to the Carboniferous rocks. The plateau is about at sea level. One great river already exists, with two arms, now called the Green and the Grand, the main river some day to be known as the Colorado. Slowly the uplift begins. It is a fairly even process, and yet there is slightly more pressure brought to bear under the southern portion, so that the whole mass has a slight tilt to the north. Professor Salisbury found certain beds of rock at seven thousand eight hundred feet above sea level at the base of the San Francisco Mountains near Flagstaff. Forty-five miles north, at the Grand Canyon, these same beds are only six thousand four hundred feet above sea level, while at the Vermilion Cliffs, another forty-five miles to the north, they are but four thousand four hundred feet above the sea.
Yet in spite of this northward tilt, when the eye ranges over the country to the south and west, from the upper porch of El Tovar, a large area of depression can clearly be seen, showing that surface erosion has planed away much of the upper crust.
The Plateau Region. Now we are ready to take a look at the borders of the plateau region. On the north, it extends into Utah, where still higher plateaus bound it. To the west, it extends by gigantic steps into the desert region. The main step is along the Grand Wash, near the one hundred and fourteenth meridian. To the south, there is one glorious step, known as the Mogollon Escarpment (locally the Red Rock Country), some three thousand feet high, which extends for a number of miles east and west, and then breaks down. This step and broken levels lead to the irregular lands of Central and Southern Arizona. On the east, the plateau extends to the Echo Cliffs beyond Marble Canyon, and as far as the ridge of the Continental Divide, where the Santa Fe crosses the Zuni Mountains, east of Gallup, N. M.
Present Conditions. With this general view of the great plateau in our mind's eye, we are prepared to examine present conditions at any given spot in the Canyon. Let us, therefore, take a seat at El Tovar, and try to read a few pages of the stone book of Creation as opened there. Suppose all this vast region at about sea level, and the uplift just beginning. The course of the Colorado River is already well defined. As the uplift continues, the cherty limestone and possibly the cross-bedded sandstone are both cut through, as the plateau slowly emerges. Whether the process of uplift is slow or rapid, as soon as a stratum emerges, it becomes subject to the influences of weathering, and the uppermost strata appearing first, they are weathered most. Hence the recession of the uppermost cliffs is greater than that of the cliffs lower down. The differences in hardness and resistance to weathering are alone responsible for the step-like profile of cliffs and terraces. The lower platform owes its width entirely to the rapid weathering and recession of the soft shales, which overlie the Tonto sandstones. The red-wall limestone, on the other hand, remains standing out as a cliff because of its exceeding durability.
The Faults. During the final uplift, the river cut through the Cambrian and Algonkian strata, and into the Granite Gorge as we find it to-day, and the process is still slowly going on. During these various periods of uplift, there were other changes occurring. Sometimes the uplift was uneven, certain parts of the plateau being lifted more rapidly than other parts; then occurred breaks in the strata, called faults. There are a great number of these faults in the plateau country, most of them crossing the Canyon from north to south. This faulting, as is readily seen, would produce cracks, and as the uneven uplift continued; the strata on one side of the crack would be lifted higher than the strata on the other side. Or, the strata on one side of the crack would be uplifted, while the other would subside.
Bright Angel Fault. El Tovar rests directly upon the strata affected by the Bright Angel Fault line. On going down the Bright Angel Trail, one cannot fail to see, as he passes the tap of the cross-bedded sandstone, the break in the strata. To the left it is fully one hundred and fifty to two hundred feet higher than it is on the right. The same depression may be observed in driving out to Hopi, Point, or returning. The stratum on which the road is made should be at the same level as the stratum on which El Tovar rests.
Fault at Bass Camp. This fault is but one of a score or more on the plateau. At Bass Camp there was a fault which displaced the strata on each side of the "break" to the extent of four thousand feet. Later, another fault occurred, which readjusted the displacement somewhat, and reduced the difference to two thousand feet, yet left the evidences of the former wide divergence. It was also during these uplift periods that the volcanic mountains of the region came into existence, as the San Francisco Range, Mounts Kendricks, Sitgreaves, Williams and Floyd on the south, and the Uinkarets—Mounts Trumbull, Logan, Emma—on the north.
Lava Flows. In one place, south of Mount Emma, Powell's party saw where vast floods of lava had flowed from it into the river. They declare that "a stream of molten rock has run up the Canyon three or four miles, and down, we know not how far. The whole north side, as far as we can see, is lined with the black basalt, and high up on the opposite wall are patches of the same material, resting on the benches, and filling old alcoves and caves, and giving to the wall a spotted appearance." All these volcanic mountains can be seen from Hopi or Yavapai points, near El Tovar.