In the case of Stalactites and Stalagmites the actual formation of limestone by the influence of Chemical action is brought home forcibly to the mind, and, in a manner, made palpable to the senses. We shall now pass to other examples in which the process is scarcely less open to observation, and in which the limestone assumes a somewhat more massive and rock-like form. Every one who has been in Italy is familiar with the limestone rock called Travertine. It is seen in the ancient walls and the venerable temples of Pæstum, which have withstood unharmed the wasting hand of time for upward of twenty centuries. In Rome, too, this stone is associated in our minds as well with the enduring monuments of antiquity, as with the imposing splendor of Christian art. The Coliseum, the most stupendous of ruins, and St. Peter’s, the most sublime of temples, are built of Travertine. In fact it seems to have been, in every age, the chief building stone employed in the architecture of the Eternal City; and the quarries from which it was taken in ancient times may still be seen at Ponte Lucano, near Tivoli. Now it is an interesting fact, that close to this very spot, at the Solfatara lake on the one side, and at Tivoli itself on the other, the formation of Travertine is going on in our own time, by the precipitation of lime from a state of solution.
The Solfatara lake, situated about fourteen miles from Rome, on the road to Tivoli, is supplied with an unfailing stream of tepid water, impregnated with carbonic acid gas and saturated with carbonate of lime. The amount of carbonate of lime which the water is capable of holding in solution depends chiefly on three things: first, on the presence of carbonic acid; secondly, on the high temperature of the water; and thirdly, on its quantity. Now the carbonic acid is ever rising in bubbles to the surface and passing away; the temperature of the water is lowered by contact with the cooler atmosphere; and its quantity is diminished by evaporation. Thus the capacity which the water at first had for holding the carbonate of lime in solution is notably diminished, and a part of the lime is precipitated to the bottom in a solid form, or clings to the vegetable matter with which it comes in contact.
A very simple and interesting experiment, made in the early part of the present century by Sir Humphrey Davy, will illustrate the rapidity with which the formation of solid stone is even now taking place. In the month of May he fixed a stick in the bed of the lake, and left it standing until the following April, when he found that it was covered with an incrustation of limestone several inches thick.[46] In precisely the same way new layers of Travertine are annually deposited in the bed of the lake, and incrusted on its rocky margin; and so the lake itself is becoming smaller and smaller from year to year. We are told that in the middle of the seventeenth century it was a mile in circuit, and now it is a little more than a quarter of a mile.[47] Here, therefore, we have an immense mass of compact limestone rock, built up by natural agents within the last two centuries.
At Tivoli, about four miles beyond the Solfatara, and two miles from the quarries of Ponte Lucano, phenomena of the same kind are exhibited. The waters of the Anio, which are saturated with carbonate of lime, form incrustations of Travertine on the banks of the river; and at the celebrated falls, where the whole volume of the stream leaps at a bound from a height of three hundred and twenty feet, the most beautiful stalactites are formed by the foam.
The formation of Travertine is going on with no less activity in other parts of the Italian Peninsula. At the baths of San Filippo, in Tuscany, there are three warm springs which contain a very large amount of mineral matter in solution. The water which supplies the baths falls into a pond, where it has been known to deposit a solid stratum of rock thirty feet thick in twenty years. In the same neighborhood are the mineral baths of San Vignone. The source from which the water flows is situated on the summit of a hill not more than a few hundred yards from the high road between Sienna and Rome; and so rapid is the formation of stone, that half a foot of solid Travertine is deposited every year in the pipe that conducts the water to the baths. At this spot we have a very good illustration of the argument we are now considering. As the stream of water flows down the slopes of the hill, a thin layer of Travertine rock is produced on the surface of the earth, almost before our eyes; and so it was previous to our own time, and so it has been for ages, as history and tradition testify. The quantity produced in each year and in each century is comparatively small, but we can have no doubt that it has been produced by the means described. Now, beneath the surface of the Earth, immediately below these modern formations, of which we have so clearly ascertained the origin, we find strata of the same kind, composed of the same materials, and arranged in the same way, layer resting upon layer, down to a depth of two hundred feet: and the Geologist accounts for the formation of the one according to the same laws which he has seen at work in the production of the other.[48]
CHAPTER VIII.
STRATIFIED ROCKS OF ORGANIC ORIGIN—ILLUSTRATIONS FROM ANIMAL LIFE.
Nature of organic rocks—Carbonate of lime extracted from the sea by the intervention of minute animalcules—Chalk rock—Its vast extent—Supposed to be of organic origin—A stratum of the same kind now growing up on the floor of the Atlantic ocean—Coral reefs and islands—Their general appearance—Their geographical distribution—Their organic origin—Structure of the zoophyte—Various illustrations—Agency of the zoophyte in the construction of coral rock—How the sunken reef is converted into an island and peopled with plants and animals—Difficulty proposed and considered—Hypothesis of Mr. Darwin—Coral limestone in the solid crust of the earth.