At the outset it is worthy of notice that the very existence of Fossil Remains, buried deep in the Crust of the Earth, forcibly confirms the Geological theory of Stratified Rocks. These rocks, as the reader will remember, are said to have been slowly spread out, one above another, during the lapse of many ages, by the operation of natural causes; and we have seen how this doctrine is supported by arguments founded on an examination of the rocks themselves,—of the materials that compose them, and of the way in which these materials are piled together. Now let us observe how clearly the testimony of Fossil Remains seems to point in the same direction.
First, the bones and shells which we now find in such profusion, far down beneath the superficial covering of the Earth, must have belonged to animals which, when living, flourished on what was then the surface. Yet now they are buried in the bosom of the hard rock, and covered over with beds of solid limestone, and sandstone, and conglomerate, hundreds and thousands of feet in thickness. How can we explain this fact, unless we suppose that these animals, when they perished, were embedded in some soft materials, which afterward became consolidated, and above which, in the course of ages, more and more matter was deposited, until at length that lofty pile of strata was produced, beneath which the remains are now found buried?
Again, it is part of our theory that the formation of Stratified Rocks took place, for the most part, under water. The Organic Remains, therefore, which we should naturally expect to find preserved in the strata of the earth, would be those of aquatic animals; or, if the remains of land animals were to be looked for, it should be of those chiefly which live near the banks of rivers and estuaries, and which, after death, might have been carried down by the current and buried in the silt and mud with which almost all rivers are charged at certain seasons of the year. We know as a fact that such animals are buried at the present day in the Deltas of the Ganges and the Mississippi; and it would be reasonable to suppose that the same should have occurred in former ages. Now here again the evidence of Fossil Remains exactly fits in with our theory. For the vast bulk of them are manifestly the remains of animals that lived in water: and the terrestrial animals, comparatively few, whose bones are preserved in the Crust of the Earth, are such as frequent the banks of great rivers or the marshy swamps of estuaries.
Thus much we may learn even from a cursory glance at Fossil Remains. But these curious monuments of ancient times have a deeper meaning, which cannot be unfolded without a more minute and laborious investigation. Our readers are aware that all the animals at present existing on the face of the Earth have been scientifically grouped together, according to certain well-marked characteristics, into various Kingdoms, Classes, Genera, and Species. Thus, for example, the horse and the dog are two different Species, belonging to the same Class of Mammalia; the eagle and the sparrow are two different Species of the same Class called Birds. Then again the Class of Mammalia and the Class of Birds both belong to the one common Kingdom of Vertebrata; because, though different in many other respects, they agree in this, that all the members of both Classes have a vertebral or spinal column, to which the other parts of the internal skeleton are attached.
Now when Cuvier began to examine closely the Organic Remains of former times, to which his attention was called by the bones dug up in the gypsum quarries of Montmartre, near Paris, about the close of the last century, he brought with him to the task a very large acquaintance with the various forms of life that, in the present age, prevail throughout the world. And he was greatly struck with the marked difference between those living animals with which he had been long familiar, and those with which he now became acquainted for the first time. The more he extended his researches, the more manifest did this difference appear; until at last it became quite clear that the great bulk of the animals whose remains are preserved in the Crust of the Earth, have no representatives now living on its surface. Nevertheless, he observed that, though the Species no longer exists, it often happens that we have still other Species of the same Genus; or if the Genus, too, be extinct, we have other Genera of the same Class. Here, then, is the first great truth at which Cuvier arrived, and which has been since confirmed by extensive observations:—that the animals which formerly dwelt on this Earth of ours, were, for the most part, widely different from those by which it is now inhabited: and yet there is a well-defined likeness between them; that both have been created on a plan so strictly uniform, that the one and the other naturally find their place in the same system of classification.
As the science of Palæontology progressed, and new facts were day by day accumulated, another truth, not less important, was gradually but certainly developed. In the distribution of Fossil Remains through the various strata of the Earth, there is a certain order observed, a certain regular law of succession, which cannot have been the mere result of chance, and which it is the business of science to unravel and explain. The facts are these. If we follow a particular set of strata in a horizontal direction, we find that the same fossils continue to prevail over hundreds of square miles, nay, often over a space as large as Europe, though beyond certain limits this uniformity of Fossil Remains will gradually be observed to disappear. But when we penetrate in a vertical direction through the strata, the forms of animal and vegetable life that we meet with are constantly changing. After a few hundred yards at the most, we find ourselves in the midst of a group of fossils, altogether different from those which we have passed in the beds above: and so on, as we proceed downward, each particular set of strata is found to have an assemblage of fossils peculiar to itself.[82]
There can be no reasonable doubt as to the truth of these facts. They have been established and confirmed by the positive testimony of a whole host of Geologists, whose researches have extended to all parts of the globe. And we have besides a kind of negative evidence on the subject which is scarcely less convincing than the positive. Nothing is more easy than to refute a universal proposition if it is false. If it is not a fact that each group of strata, as we proceed downward, exhibits a collection of Fossils peculiar to itself, the assertion may be at once disproved by pointing out two or three different groups with the same Fossils. There are thousands of practical Geologists at work all over the world, eager for fame; and any one of them would make his name illustrious if he could overturn a theory so generally received. Now, when a statement of facts can be easily disproved if untrue; and when, at the same time, there is a large number of men whose interest it would be to disprove the statement if possible; and when it is nevertheless not disproved; this circumstance, we contend, is a convincing argument that the alleged facts are true. And such precisely is the case before us. We therefore think it would be unreasonable not to accept the facts.
Let us next examine what is their significance. Each group of strata, be it remembered, represents to us the animal life that flourished on the Earth during the period in which that particular group was in progress of formation. It is, as it were, a cabinet in which are preserved for our instruction certain relics or memorials of that age in the world’s history. Of course it is not a perfect collection; but only a collection of those remains that chanced to escape destruction, and by some natural embalming process to be saved from dissolution. When we learn, then, that there is a marked uniformity in the assemblage of Fossils that are spread over a large horizontal area, in any group of strata, we conclude that, when that group was in course of formation, there was a certain uniformity in the animal life that extended over the corresponding area of the globe; just as, at the present day, the same species of animals are found to flourish over a great part of Europe, or America. And if this uniformity of Fossil Remains does not extend horizontally to an indefinite distance, this is precisely what we should have expected from the analogy of the existing creation: for, when we examine the present distribution of animal life over the earth, we find a marked diversity to exist between countries that are removed from one another; as, for instance, between Europe and Australia.
In the next place, we are told that, as we proceed downward into the Crust of the Earth, each successive group of strata has an assemblage of Fossils clearly distinct in character from those of the group above and of the group below. The conclusion to which this fact points is obvious enough. If, in the former case, we inferred that the animal life of any one period, considered in itself, was the same over extensive areas, in this case we must infer that the animal life of each successive period was peculiar to that particular age; being altogether distinct in its character from the animal life of the period that went before and of the period that followed. It would appear, therefore, as Sir Charles Lyell puts it, “that from the remotest period there has been ever a coming in of new organic forms, and an extinction of those which pre-existed on the earth; some species having endured for a longer, others for a shorter time; while none have ever reappeared after once dying out.”[83]
Now, from these principles, Geologists have been gradually led to build up a system of Geological Chronology; in other words, to determine the order of time in which the numerous groups of strata that make up the Crust of the Earth have been formed, and thus to fix the age of each group in reference to the rest. This Chronology is not reckoned by the common measures of time which are used in history, but rather by the successive periods during which each group of rocks was in its turn slowly deposited on the existing surface of the globe. For example, the Coal-measures that so abound in the North of England are very much older than the bluish clay of which London is built. But if we ask what is the difference between the age of the one and of the other, the answer is given not in days and years and centuries, but in the number of different Formations that intervened between the two. We are told that the Coal-measures belong to the Carboniferous Formation; that this Formation was followed by the Permian, and that again in succession by the Triassic, the Jurassic, and the Cretaceous; and that, upon this last was spread out the Eocene, to which the London clay belongs. Indeed, as regards the precise length of any given period, Geologists can offer nothing but the wildest conjectures. Some form their estimates in thousands of years; others in millions. And the wisest amongst them fairly confess they have no sufficient data to make an accurate computation. Nevertheless, they are all agreed in this, that the ages of which the memory is preserved in history, that is to say, the last six thousand years, are but a small part of one Geological period. Compared to the voluminous chronicles laid up in the Crust of the Earth, the records inscribed by human hands constitute but an insignificant fraction of the world’s history. Our readers will be glad to learn something of the way in which this startling system of Geological Chronology is constructed and developed.