Many microbes are able to elaborate when grown on various culture media, such as gelatine or slices of potato, most brilliant and beautiful pigments ranging from intense blood-red to the most delicate shades of pink, and embracing every gradation of yellow, as well as browns, greens, and violets. Now it has been found that some of these pigment-producing bacteria, when exposed to sunshine on these nutritive materials, fail to exhibit their characteristic colour, although the duration of insolation may not have sufficed to destroy their actual vitality. One of these organisms originally obtained from water has been specially studied in this respect by M. Laurent. If slices of potato are streaked with a small number of this particular bacillus (bacille rouge de Kiel) a magnificent patch of blood-red colour makes its appearance in the course of a day or two, but if, on the other hand, similar slices of potato are exposed to three hours' sunshine, a colourless growth subsequently develops, except where here and there a few isolated spots of pale pink are visible. When the insolation is prolonged for five hours nothing whatever appears on the potato, the bacilli having been entirely destroyed. But this is not all. M. Laurent found that if he took some of the colourless growth and inoculated it on to potatoes he obtained again, but without insolation, a colourless vegetation—in fact, three hours' insolation had so modified the physiological character of the bacillus that a new race had been generated, a race deprived of its power of producing this red pigment. In what numerous directions the character of microbes may be and are being modified, even by simple exposure to sunshine, opens up a wide field for speculation and research, whilst the tractability of these minute and most primitive forms of life, if we only approach their education with sufficient insight and patience, may enable us to make them serve where they now are masters.

The remarkable discoveries on the modification of the disease-producing properties of certain bacteria by sunshine may perhaps encourage the idea that we are making some progress towards the attainment of this desirable millennium. That diminution of the virulence or disease-producing power of such deadly microbes as those of cholera, anthrax, and tuberculosis can be brought about through simple exposure to the sun's rays seems almost inconceivable, yet it has been discovered that by placing the cholera bacillus, for example, in the sunshine its virulent character undergoes such a profound modification that it is actually reduced to the condition of a vaccine, and may be employed to protect animals from infection with its still virulent brethren. Yet this is what has been undoubtedly shown by Dr. Palermo in very carefully conducted investigations. He was, moreover, able to indicate, within a very narrow margin, the precise amount of insolation necessary to bring about this result: for if the cholera cultures were only exposed for three hours, their toxic properties were not reduced to the condition of vaccine; but if the insolation was continued for three and a half hours up to four and a half hours, they became endowed with the requisite immunising properties, and animals treated first with the so-called sunshine-cholera-vaccine were able subsequently to withstand otherwise fatal doses of virulent cholera cultures. Dr. Palermo also found that, besides producing this subtle modification in the character of cholera bacilli, sunshine exerted a remarkable physiological change in these organisms, for when examined under the microscope they no longer exhibited their typical activity, having been deprived of all powers of movement, whilst those kept during the same length of time in the dark had not abated one jot of their customary mobility.

But sunshine not only controls in this wonderful manner the action of the living bacillus, but it also operates upon the products elaborated by disease organisms. Thus the microbe producing lock-jaw or tetanus may be grown in broth, and the latter may be subsequently passed through a porcelain or a Berkefeld filter, so that the resulting liquid is entirely deprived of all germ life. This tetanus-filtrate, as it is called, is endowed with very powerful toxic properties, and it will retain its lethal action even when kept for upwards of three hundred days, providing it is screened from all light; but place such filtrates in diffused light, and they lose their poisonous properties, requiring, however, upwards of ten weeks to become entirely harmless; if, on the other hand, they be exposed to sunshine, they are completely deprived of their toxic character in from fifteen to eighteen hours. Again, as little as five hours' sunshine is sufficient to greatly modify the toxic action of diphtheria cultures. It is of interest also to note that even the venom of the rattlesnake, that most potent of all poisons, cannot emerge unscathed from an exposure to sunshine maintained during a fortnight.

Interesting as all these isolated observations are, they indicate what an immense amount yet remains to be done before we can hope to have any connected conception of the mechanism, so to speak, of insolation. At present there is too large an allowance, which we are compelled to make, for the unknown to permit of our adequately manipulating this marvellous agency in relation to bacteriological problems. But who shall say what part has been, and is being still, played by sunshine in determining the individual character of microbes, operating as it has done from time immemorial upon countless generations of these minute germs of life?

The problem of insolation has been attacked from an entirely novel point of view by Dr. Masella, who has endeavoured to find out whether sunshine plays any part in the predisposition of animal life to infection.

Now sunshine has long been credited with possessing therapeutic powers, and, indeed, traditions of cures effected by the ancients by means of insolation have been treasured up and handed down to the present day. Even as late as the beginning of the present century we may read of a French physician seriously recording his claim to have cured a dropsical patient within two weeks by placing him daily for several hours in the sunshine, and many medical journals of recent years contain communications on the beneficial results derived from the use of sunshine in the treatment of various diseases. It seems curious, therefore, that whilst so much has been done to test the action of light on disease microbes in artificial surroundings, such as are to be found in laboratory experiments, hardly any investigations have been made to try and define more precisely how sunshine may affect their pathogenic action within the animal system. Dr. Masella's researches, undertaken with the express object of, if possible, elucidating this question, are therefore of special interest and importance.

The first series of experiments was carried out to ascertain whether exposure to sunshine increases or reduces an animal's susceptibility to particular diseases, those selected for investigation being typhoid fever and cholera. For this purpose guinea-pigs were exposed to the full rays of the sun during a period of from nine to fifteen hours for two days, whilst other guinea-pigs, for the sake of comparison, were not permitted to have more light than that obtainable in a stable where only diffused light was admitted. Both these sets of animals were subsequently infected with virulent cultures of cholera and typhoid germs respectively, and were in neither case exposed to sunshine. The results which Dr. Masella obtained were remarkable, for he found that those animals which previous to infection had been placed in the sunshine died more rapidly than those which had been kept in the stable, and that the exposure to the sun's rays had so increased their susceptibility to these diseases that they succumbed to smaller doses, and doses, moreover, which did not prove fatal to the other guinea-pigs. Still more striking was the part played by insolation in the course of these diseases in animals exposed to sunshine after inoculation, for instead of dying in from fifteen to twenty-four hours, they succumbed in from three to five hours.

Here, then, we find sunshine, in some mysterious manner not yet understood, far from benefiting the animal and assisting it in combating these diseases, actually contributing to the lethal action of these bacteria. It has been asserted on the authority of some medical men that in cases of small-pox recovery is rendered more easy and rapid when light is excluded from the patient's room; whether Dr. Masella's experiments will permit of any such interpretation being placed upon them remains to be seen; they are, at any rate, extremely suggestive.

That it is possible for temperature to have some determining influence upon the course of certain diseases has been shown by O. Voges, who, experimenting with a minute bacillus which he isolated from tumours characteristic of a cattle disease very prevalent in South America, found that although this bacillus was the undoubted fons et origo of the disease, he could not produce fatal results in animals if he kept them in cold surroundings; only when the temperature was raised to from 35-45 degrees Centigrade did the infected animals succumb. The dependence of the activity and virulence of this micro-organism upon temperature is also borne out in actual experience, the disease being the more prevalent and the more fatal the hotter the climate of the country.

It may be mentioned in passing that this bacillus has the distinction of being the smallest yet discovered; the influenza bacillus hitherto held the palm in this respect, but it must yield its position to its more successful rival, for Voges states that when magnified about fifteen hundred times it is only just discernible in the microscopic field.