"When icicles hang by the wall,
And Dick the shepherd blows his nail
And Tom bears logs into the hall,
And milk comes frozen home in pail."
Again, with what solicitude those of us who have gardens wait to see what will have survived the iron grip of winter in our favourite flower borders, and how frequently we have to face blanks in the ranks of some of its most cherished occupants! Numerous bacteriologists, however, have now confirmed this fact, the fields of ice and snow have been repeatedly explored for micro-organisms, and it has been shown how even the ice on the summit of Mont Blanc has its complement of bacterial flora, that hailstones as they descend upon the earth contain bacteria, that snow, the emblem of purity, is but a whited sepulchre, and will on demand deliver up its bacterial hosts. Quite apart from its general scientific interest, the bacterial occupation of ice is of importance from a hygienic point of view, and a large number of examinations of ice as supplied for consumption have been made. Thus, Professor Fraenkl and also Dr. Heyroth have submitted the ice-supply of the city of Berlin to an exhaustive bacteriological examination. These investigations showed that the bacterial population of ice as supplied to Berlin is a very variable one, and fluctuates between great extremes, rising to as many as 25,000 bacteria in a cubic centimetre (about twenty drops) of ice-water, and falling to as few as two in the same measure.
There are numerous circumstances which come into play in determining the density of the bacterial population in ice. First, of course, the initial quality of the water from which the ice is derived is a factor of great importance, for the purer the water the fewer will be the bacteria found in the resulting ice.
Again, if the ice field is wind-swept by air bearing an unduly rich complement of bacteria, as may be expected in the vicinity of populous cities, for example, then the ice will reflect in its bacterial contents the undesirable neighbourhood in which it was produced. Water in repose, again, yields purer ice than water in movement during freezing, for during rest opportunity is given for the bacteria present in suspension to subside, the process of sedimentation or deposition of bacteria which takes place under these conditions playing an important part in water-purification; when, however, the water is disturbed by swift currents, or agitated by storms, this process is interrupted, and the bacteria become entangled in the ice and frozen in situ.
The importance attaching to the physical conditions under which ice is produced in enabling an estimate to be formed of the safety or otherwise of the same for consumption may be gathered from the following extract from an American report on the subject:—
"On the whole it is evident that the conditions surrounding water when it freezes are very important factors in determining the purity of the ice formed. If there is a considerable depth of water in portions of a somewhat polluted pond or river, and the ice is formed in these portions in comparatively quiet water with but little matter in suspension, this ice will probably be entirely satisfactory for domestic use. On the other hand, ice formed in shallow portions of such ponds or rivers, even during still weather, or in any portion if there is a considerable movement of the water by currents or wind while it is forming, may be rendered by these conditions entirely unfit for domestic use."
We have learnt that ice contains bacteria, that its bacterial contents are to a certain extent dependent upon the bacterial quality of the water before crystallisation, and that an important factor in determining its purity is afforded by the physical conditions prevailing at the time of freezing.