At the head of the Sealevu valley, about a mile or rather more above the village, and a little east of the track followed in the descent above described, the mountain-range terminates abruptly in lofty cliffs 400 or 500 feet in height. At their base, which is about 1,000 feet above the sea, once stood the village of Lovutu. These cliffs are formed of basic agglomerate-tuffs which display a horizontal arrangement, but there is no distinct bedding. They have the castellated appearance that often characterises horizontally bedded sedimentary formations. The inclosed rock-fragments vary in size from 18 inches to half an inch and smaller. The larger are angular or sub-angular, and are composed of hemicrystalline basaltic andesites, scoriaceous and vesicular and sometimes amygdaloidal. The smaller fragments are more or less rounded and of the same material. The matrix is made up of fine detritus of the large fragments and of lapilli of a vacuolar palagonitic basic glass, whilst small crystals of calcite fill the cavities and line the fissures. The phenocrysts of plagioclase and augite inclosed in the altered glass also display extensive alteration, and in the first case are largely replaced by calcite, secondary quartz, and other products. No organic remains came under my notice; but on account of the alteration of the tuff-matrix their preservation could hardly be expected. Bearing in mind, however, the fossiliferous character of the tuffs and agglomerates in the higher part of the range, it can scarcely be doubted that the agglomerate-tuffs of the Sealevu cliffs are also submarine.

Each traverse of the great Koro-tini Range will provide us with new facts to aid us in framing an explanation of the origin of this long mountain-ridge. The principal lesson to be learned from the journey across the range from Waisali to Sealevu, and from the visit to the cliffs, is concerned with the great extent and thickness of these submarine basic tuffs and agglomerates. From 1,000 feet above the sea up to the summit, 2,400 feet in height, they are almost the only rocks exposed, excepting the occasional masses of basaltic rocks, which probably represent dykes. Their maximum thickness must amount to some hundreds of feet.

(2) Traverse of the Koro-tini Range from Mbale-mbale to Vandrani.—In this traverse the track before ascending to the summit crosses a spur of the Koro-tini Bluff, and then descends into the valley of the Natoarau river on the east side of it. It will therefore be convenient to describe the bluff before giving my description of the journey across the range.

The Koro-tini Bluff is a lofty headland (if I may so term it), lying about four miles inland from the mouth of the Ndreke-ni-wai. It attains an elevation of about 2,000 feet, and terminates above in a line of precipices 300 or 400 feet in height. It represents the southern edge of the level-topped mountain range behind, and like the Sealevu cliffs on the north side it affords a natural section of its mass. It is shown in the plate facing page [153], where it rises at the back of the lagoon.

Approaching the bluff from Mbale-mbale, one crosses a low-lying district less than 100 feet above the sea before striking the spur. Here and in the lower few hundred feet of the spur are exposed basic agglomerates, and occasionally in the mass a semi-vitreous vesicular olivine-basalt, almost like a pitchstone, and displaying large porphyritic crystals of plagioclase, 5 or 6 millimetres long, the agglomerates being made up of the same material. Higher up, at elevations between 1,000 and 1,500 feet, are exposed coarse palagonite-tuffs made up of fragments, usually 1 to 3 mm. in size, of extensively palagonitised basic vitreous rocks, such as occur in the cliffs above. These tuffs become coarser as one approaches the precipitous bluff, the base of which lies about 1,650 feet above the sea. Here the cliffs present a bare rocky face, some 200 feet high. The lower portion is composed of an agglomerate-tuff, and the upper portion mainly of agglomerates. These deposits display no bedding excepting a single plane of division inclined steeply to the north at an angle of perhaps 40°.

The blocks in the agglomerate-tuff are either angular or sub-angular, and are less than a foot across. They are all composed of more or less vitreous porphyritic olivine-basalts, showing large crystals of plagioclase a fifth of an inch (5 or 6 mm.) in length. But they vary somewhat in character. Some of them, that are vesicular and almost scoriaceous, may be termed from their glassy nature porphyritic pitchstones. Others again, where the groundmass is hemi-crystalline, may be designated porphyritic compact basalts, and are referred to genus 37 of the olivine-basalts.

The matrix of the agglomerate-tuff is made up of angular fragments, up to 5 mm. in size, of singular vitreous and semi-vitreous olivine-basalts, in part palagonitised. There is evidence of crushing in situ of some of the porphyritic felspar crystals; but it is not so marked as elsewhere noticed. The palagonite is also in part interstitial, a character that goes to support the view advanced on page [342], that the palagonite may be connected in its origin with the heat developed during crushing, only a moderate temperature being required for the partial fusion of the glass.

In crossing the range by this route from Mbale-mbale one first ascends, as above observed, the spur of the Koro-tini Bluff up to a height of 1,200 feet. The track then descends into the valley-gorge of the Natoarau river on the east, the bottom of which is 750 feet above the sea, and from here the climb begins. One ascends the bed of the stream course, clambering over slippery rock surfaces up to 1,200 or 1,300 feet, where the stream is left, and the mountain-slopes, often steep and precipitous, are then followed to the summit, 2,000 feet in height. Coarse and fine palagonite-tuffs and agglomerate-tuffs of the same character are exposed on the surface from the commencement of the ascent up to 1,850 feet; but they are displayed much more extensively in the stream-course than in the soil-covered upper slopes.

The tuffs are grey except when hydrated, when they turn yellowish-brown. Some of them contain lime, as much at times as 10 or 12 per cent.; whilst others possess little or none. Tests of foraminifera are not infrequently inclosed, even as high as 1,850 feet. A description of one of these tuffs containing a few tests of Globigerina, which was obtained at 1,200 feet, is given on page [331], under sample D. It will be there seen that they are derived from different basic rocks, some containing but little glass, others mainly vitreous, only the more glassy constituents being palagonitised. The palagonite-tuff sandstones exposed in large blocks on a bare spur at 1,850 feet contain 12 per cent. of lime, the largest tests of foraminifera being not over half a millimetre.[[67]] These tuffs occasionally show bedding. At 1,000 feet they dip gently to the S.S.W., and at 750 feet they are inclined about 15° in the same direction. In this last locality they consist of alternating layers, 1 to 4 inches in thickness, of fine and coarse tuffs, the coarser looking like sandstone.... The blocks in the agglomerate-tuff are sub-angular, and of an olivine-basalt with hemi-crystalline groundmass,[[68]] their size ranging from 2 feet to an inch. I noticed one large block of this rock, measuring 2 × 1½ × 1 feet, imbedded alone in the tuffs at 1,200 feet. At one place a tuff containing small fragments of basalt displayed a concretionary structure, indicating probably the proximity of a dyke, the globular masses being 4 feet across. A little lime occurs in the matrix of the agglomerate-tuff.

The summit of the range, 2,000 feet in height, is “ridgy,” about half a mile in width, and cannot therefore be described as table-topped. The rocks exposed in blocks on the surface are composed of a semi-ophitic olivine-basalt containing a large amount of interstitial glass which shows the fibrous crystallites of the early stage devitrification. It is referred to genus 33 of the olivine-basalts.