Botanists have not given us much account of the associates of the interesting genus Fitchia on the uplands of Tahiti. We learn, however, from Nadeaud that in his time these Composite trees and shrubs were spread over the higher region of the island of Tahiti above 800 and 1,000 metres. Cheeseman, to whom we are indebted for the discovery and the description of the Rarotongan species, tells us that this tree, which attains a height of 25 feet in the sheltered valleys, and is much dwarfed on the exposed ridges and hill-tops, often forms the greater part of the forest above 500 feet, and reaches the highest peaks of the island (2,250 feet).

In discussing the probable mode of dispersal of these early Composite plants of the Pacific we shall be treading on somewhat debatable ground. We will, however, point out that the mere possession of structures that could be utilised for dispersal of the seeds is not the only important question here involved. If we could demonstrate that all these genera possess exceptional capacities for distribution over the ocean, we should prove too much, since the process has been in the main suspended for ages. If, on the other side, it could be shown that their fruits are not at all suited for such dispersal, we should prove too little, since the ancestors of these genera must have been transported to these islands in some fashion or other. This clearly indicates that other important factors have also come into play in determining the distribution of the early Compositæ of the Pacific islands.

It was long ago pointed out by De Candolle that the possession of a pappus does not, as a rule, increase the area of a Composite plant, although as regards hooks and barbed appendages, such as occur in Bidens, the greater areas of the plants thus provided may be, as he thought, in some measure explained. Even in respect to hooks and barbs it would be easy to point to cases where, as Bentham remarks, unusual powers of adherence are by no means indicative of wide dispersal in all cases. In any event it will be also incumbent on us to explain why these genera no longer possess facilities for distribution. This suspension of the means of dispersal is not, however, peculiar to the age of the endemic genera of the Pacific islands. It is a character but in a less degree of the succeeding age, the age of genera found outside the group, but represented within it by endemic species; and from this we may suspect that we have had in operation in the Pacific an influence, far-reaching both in time and space, to which the agencies of dispersal have been compelled to adapt themselves, an influence which has acted as a distributor of the distributing agencies.

Coming to the fitness for dispersal of the achenes of the early Composite genera of the Pacific islands, it will be assumed that they have been, as a general rule, transported in birds’ plumage. The fruits are usually 2·5 to 12 millimetres (116 to 12 inch) in length, and are provided either with a pappus of soft or stiff bristles, or with awns or teeth, but these appendages vary much in size in the different genera and in different species of the same genus. The instance of Lipochæta is especially significant as indicating the alterations which the appendages of the achene may have undergone in the cases of other genera. With most species there are usually two or three teeth or short awns, but in some species these are obsolete, and in others they are long and stout.

Bearing these facts in mind we should hesitate to rely too much on the present condition of the achenes in the other genera as an indication of the fitness for dispersal of the fruits of their ancestors. In one genus, Campylotheca, which may be regarded as among the youngest of the genera, the achenes are provided with barbed or hooked awns which cause them to adhere as tenaciously to one’s clothes as in the case of those of Bidens, an allied genus. In Fitchia, the Tahitian genus, which may be looked upon as one of the oldest of the Pacific genera of Compositæ, the achene is furnished with two long awns or setæ, which, as Drake del Castillo observes, recall those of Bidens. The achenes of the other Hawaiian genera, as regards their fitness for dispersal in plumage, may be said to give less definite indications. In some, as in Dubautia and Raillardia, there is a typical pappus of ten to twenty long hair-like bristles. In others again, as in Wilkesia and Argyroxiphium, the pappus is much reduced, and in some species of Lipochæta it is, as above remarked, quite obsolete.

The chances of the achenes of the parent plants having in some cases been originally transported to the islands in the plumage of birds would be increased by a bird making its nest of the plant-materials or amongst the plants themselves, or by its pecking at the fruit-heads. In our own time different species of the grouse family on the slopes of the Californian and Columbian mountains make their nests on the ground under the shade of Artemisia bushes and find a portion of their sustenance in their fruits. Artemisias also form one of the features of the vegetation of the Hawaiian uplands; but since they present only specific differentiation they are referred to a later era. Yet it will be on the slopes of the Rocky Mountains and of the Californian Sierra Nevada, amongst the “sage-brush” and the grouse, that we may have to stand when we look in thought across the Pacific towards far distant Hawaii and ask ourselves whence came its tree-like Raillardias, its shrubby Dubautias, its tall Wilkesias, and the silvery Ahinahinas (Argyroxiphium).

It is possible that in some genera the achenes have, or had, a means of adhering to plumage through a “sticky” secretion, such as is sometimes found with Lagenophora, an Hawaiian genus of the next era, and also with the weed-plant Adenostemma viscosum; but this is a point that has not yet been investigated. Nor can we altogether exclude the chance of the achenes having in some cases been transported unharmed to Hawaii in a bird’s stomach. The possibility of this has been above implied in the case of Artemisia; and it is pointed out in [Chapter XXXIII]. that pigeons in Hawaii feed sometimes on the achenes of Compositæ. The Hawaiian goose (Bernicla sandwicensis) lives, according to Mr. Dole, on Sonchus asper, an introduced plant, as well as on berries (Wilson’s Aves Hawaiiensis). There are numerous references of this nature in books about birds, and it should always be remembered that birds in pecking at the fruit-heads scatter the seeds on their feathers. (See [Note 67].)

From the foregoing remarks it may, I think, be inferred that the achenes of the ancestors of the original Composite genera of the Pacific islands were in all probability not unfitted for transport by birds, more especially in their plumage. Some of my readers, however, may express a doubt as to whether birds likely to disperse seeds would be found in any numbers at the great heights where some of the continental Compositæ occur. But it is well known that birds of the grouse and partridge family frequent high levels in continental regions over much of the globe. Arborescent Compositæ are found at heights of 10,000 to 14,000 feet on the mountains of Central Africa; and it should be noticed that Sir Harry Johnston observed “francolins” on the slopes of Ruwenzori up to 13,000 feet (Uganda Protectorate, vol. 1; Trans. Linn. Soc. Bot., Ser. II. vol. 2). Sir Martin Conway in the Bolivian Andes found geese, ducks, gulls, snipe, &c., numerous in suitable places up to 17,000 feet (Journ. Roy. Geogr. Soc., 1899); whilst geese and teal were noticed by Sir Joseph Hooker and others at elevations of 17,000 feet in the mountains of Tibet (Hooker’s Himalayan Journals; Journ. Linn. Soc. Bot., vol. 35, p. 147). These are all birds, as shown in [Chapter XXXIII.], that are likely to disperse plants, and probably none more effectually than the goose, of which Hawaii possesses a particular variety or species. It may be remarked that geese, ducks, gulls, and other birds use Cotula plumosa in Kerguelen for making their nests (Dr. Kidder quoted by Mr. Dixon in his book on Birds’ Nests).

Sea-birds were probably the principal agents in carrying the achenes of the early genera of the Compositæ to Hawaii. Dr. Hillebrand attached importance to the tropic-bird (Phaethon) in the distribution of species (Introd., p. 30); and since these birds breed at the crater of Kilauea in Hawaii, 4,000 feet above the sea, and also high up in Tahiti (Moseley), its agency is not unlikely, I am inclined to think, however, that birds like the petrels and puffins, that in nesting burrow in the ground, choosing places where the vegetation is thickest, and where they would be likely to get seeds on their feathers, would be more efficient agents. This is the view expressed by Prof. Moseley in Wallace’s Island Life, p. 250. He considered that albatrosses, petrels, and puffins have played a great part in the distribution of plants, and to some degree especially account for the otherwise difficult fact that widely distant islands in tropical seas have similar mountain plants. Birds, he says, that in high latitudes, as at Tristan da Cunha and Kerguelen, often burrow near the sea-level, in the tropics choose the mountains for their nesting-place; and he refers to a puffin that nests on the top of one of the high mountains of Viti Levu at an altitude of 4,000 feet, to a petrel nesting among ferns at Tahiti at an elevation of 4,400 feet, and to another petrel breeding in like manner in the high mountains of Jamaica at a height of several thousand feet above the sea. He gives point to these interesting remarks, which might be supplemented by data from other parts of the world, by observing that it is not necessary that the same species should now cover the range of the plants concerned. The ancestor of the species might have carried the seeds, and the range of the genus is alone sufficient. It may be added that, as I have shown in [Chapter XXXIII.], sea-birds have been far more active agents in the distribution of plants than many people might imagine. The more recent observations of Ekstam in Spitzbergen have thrown considerable light on this subject.

Having in the first place formed the opinion that the achenes of the early Hawaiian Compositæ are suited for dispersal by birds, and then shown that sea-birds were probably the principal agents, we are met with the curious difficulty that in the case of the early Hawaiian genera of Compositæ the complete suspension for ages of the means of dispersal is involved in the circumstances that these genera are confined to the Hawaiian group. We can attribute to the agency of existing sea-birds the occurrence of the genus Lagenophora in the uplands of Hawaii, on the mountain-tops of Fiji, and in Australia and New Zealand; but the agency of birds as at present in operation does not assist us except indirectly in the case of the genera restricted to Hawaii or to Tahiti. Is it possible, we may inquire, to penetrate this mystery? Why, we may ask with Mr. Hemsley, has the agency ceased acting, and why have its operations been confined to the conveyance of seeds to the islands and not from the islands as well (Intr. Bot. Chall. Exped., p. 66)? I need scarcely add that the same question presents itself with all the other peculiar genera of these islands, and in fact with endemic genera all over the world. What can be stranger, it may be remarked, than the limited distribution of the Pandanaceous genus Sararanga in the Western Pacific, although suited for dispersal by frugivorous birds. This is not, indeed, a special difficulty connected with oceanic islands; it applies to the whole plant-world; yet it is possible that, as it is exhibited by the Compositæ in these islands, we may be in a better position to grapple with the problem. But before doing so it will be requisite to look a little closer at these early Hawaiian genera of the Compositæ.