Coral reefs are stated not to exist in tropical latitudes on the west coast of South America in our own day; but we might almost expect that at the close of the Tertiary period, and perhaps before the appearance of the Humboldt current, they existed with the mangroves on the coast of Peru. As bearing on the subject of a change of climate on that coast in times geologically not remote, I may allude to the circumstance, which is discussed more in detail in [Note 75], that I found, sometimes in fair quantity, blocks of massive coral, long since dead, much pierced by boring shells, and in places undergoing a chemical change, at Arica (lat. 18° 25ʹ S.), at Callao (12° 3ʹ S.), and at Ancon (11° 45ʹ S.) on the coast of Peru.

These masses, which varied from a few inches to two or three feet in size, gave me the impression of having been torn off the bottom, in some cases in recent times, in others perhaps centuries ago, by the huge sea-waves that from time to time overwhelm this coast. At Ancon, where they were sufficiently abundant to be used for bordering the flower beds in the hotel garden, they were most numerous in the vicinity of a rocky spur of andesite that protruded from the beach between the tide levels and was more or less covered at high water. A few paces inland from the beach some of these coral masses, evidently stranded long ago, were undergoing that queer process of disintegration which everything calcareous seems to undergo on the beaches and plains of this almost rainless coast. Like the bones of the Incas lying bleaching on the neighbouring plains, like the sea-shells and bones of bird and beast cast up long ago on the beach, they were falling to powder where they lay, and the coral fragment lay often in the midst of its own débris. The blocks on the beach proper were for the most part still hard and compact, and the same may be said of those observed on the beaches of Callao and Arica.

The corals were quite different from those with which I was familiar in the reefs of the Pacific islands, and, bearing in mind the known distribution of coral reefs, I was a little dubious about them. Accordingly I sent some specimens to the British Museum, and Mr. Jeffrey Bell has kindly informed me that they seem to be decayed and much injured perforated examples of Porites. When powdered they effervesce in an acid, but the bulk of the material remains undissolved.

No more eloquent testimony could be afforded of the rainless climate than these corals crumbling on the Ancon plains when washed a few paces inland from the beach. They could be noticed in all stages of disintegration from the block surrounded by a little line of disintegrated material, representing the initial products of its own decay, to the crumbling mass, almost friable in the fingers, that was lying in the midst of its own dust and loose polyp-tubes, and finally to the little mound of débris that alone remained. Mr. Darwin, in his Journal of Researches (chap. xvi.), refers to a similar process of decay in the elevated shell-beds of San Lorenzo, off the coast of Callao. On the higher terraces a layer of saline powder, consisting of sulphates and muriates of lime and soda but with very little carbonate of lime, was the sole indication of the shell-beds. Dry climatic conditions at the sea-border evidently favour, as he observes, the early decay of exposed calcareous remains.

The Shore-plants and Stranded Seed-drift of the Panama Isthmus.

I spent two days at Panama and two days at Colon in examining the neighbouring beaches and estuaries of the Pacific and Atlantic coasts of the isthmus. On the Panama side the mangrove-belt was formed on the seaward border of “mangle chico” (the small prevailing type of Rhizophora mangle), Laguncularia, and Avicennia; whilst behind it passed into extensive swampy tracts occupied by the Swamp Fern (Chrysodium aureum), Hibiscus tiliaceus, and other plants. On the Colon or Atlantic side the mangrove-belt had precisely the same composition and presented the same species, Rhizophora and Avicennia usually forming the outposts on the reef-flat, whilst Laguncularia was abundant in the rear. In the estuary of the Rio Chagres, Rhizophora and Laguncularia were abundant near the mouth, and Chrysodium aureum and Hibiscus tiliaceus by the waterside higher up. Dr. Seemann, in his volume on the botany of the voyage of H.M.S. Herald, observes that the species of Laguncularia common on both the Atlantic and Pacific coasts of the Panama isthmus is L. racemosa. This species differs in the form of its fruit from the Ecuador tree. Laguncularia racemosa, Rhizophora mangle, and I may add Anona paludosa and Conocarpus erecta, are all plants of the mangrove-formation that occur not only on the Pacific and Atlantic coasts of America but also on the west coast of Africa. It is likely, I may add, that the “mangle grande,” the Ecuadorian type of Rhizophora mangle, exists in the Panama isthmus, since in the higher part of the estuary of the Chagres I found trees approaching it in characters.

Amongst the plants growing on the Panama beaches I noticed Canavalia obtusifolia, Hibiscus tiliaceus, and Ipomœa pes capræ, all of which occur also on the Atlantic side of the isthmus. The Manchineel (Hippomane mancinella), found also on the Atlantic side of the continent, grows on the Panama beaches. Its fruits, which look like crab-apples, lose their outer fleshy covering when drying on the sand. Not being familiar with this poisonous tree, I allowed some of the milky sap of the fruits to touch the skin, and suffered great pain for five or six hours. The fruit possesses an inner coat of air-bearing cork-like tissue; and the stone, if I may so term it, thus acquires great floating power. I kept some afloat in sea-water for five weeks, and no doubt they will float for months.

The seed-drift to be observed stranded on the beaches and floating in the estuaries on both sides of the isthmus is, generally speaking, the same—a circumstance of great importance in plant-distribution, since we can here see rivers bringing down the same seeds from the same “divide” to the shores of the Pacific and Atlantic oceans. In the case of a plant like Entada scandens, which grows in the interior, this is a matter of much interest, as it thus possesses here a centre of dispersal from which its seeds can be carried by the currents eastward to the West African coast and westward across the Pacific to Malaya and (given time) around the shores of the Indian Ocean to the East African coast. In describing the possible routes of dispersion from this centre I have described the distribution of the species.

I am indebted to Mr. Holland, of the Kew Museum, for the identification of some of the drift-seeds and fruits collected by me on the isthmus, those identified by him being followed by the letter H. On the beaches and floating in the estuaries on both sides of the isthmus I found Rhizophora seedlings; seeds of Entada scandens and Mucuna urens (medic.), H.; seedvessels of Spondias lutea (Linn.), H.; Prioria copaifera (Griseb.), H., with decayed seed; and the empty nuts, 112 to 2 inches in size, of more than one species of Astrocaryum, H. Although in the case of the two last-named genera the seedvessels were useless for dispersal, being evidently brought down from the interior by the rivers, they serve to illustrate the important principle that the rivers bring down the same seed-drift on both the Atlantic and Pacific coasts of Central America. Mr. Hemsley includes amongst the seed-drift stranded on the coast of Jamaica the seedvessels of Spondias (probably S. lutea) and of Astrocaryum (Bot. Chall. Exped., iv. 299, 304).

Those of Spondias lutea were found by me floating in the Guayaquil River and stranded on the beaches of Ecuador and of the Pacific and Atlantic coasts of the Panama isthmus. This is the Hog-plum, which in tropical America and the West Indies is both wild and cultivated. Its buoyant “stone” has a covering of cork-like air-bearing tissue. This is a remarkable case of non-adaptation in the matter of buoyancy. The seedvessels cut across contained sound seeds; and they are provided with the essential qualities of “long floaters.”