Observation, indeed, shows that such seedlings are exposed to and suffer from these perils; yet it is evident from the distribution of the species that, whether in the germinating condition or not, the seeds and fruits of Anona paludosa and Laguncularia racemosa have been carried by the currents from America to the West Coast of Africa. The seedlings of Avicennia and of Rhizophora mangle have also performed the same trans-Atlantic voyage. Those of both these mangroves are to be observed floating off the coasts and in the estuaries of both coasts of America. The seedlings of Avicennia are particularly abundant in the mangrove-creeks of the delta of the Guayaquil River; and I observed them in a healthy condition, ten to twenty miles out at sea, floating together with those of the Rhizophora. Since, as in the case of Rhizophora, germination occurs normally on the plant, Avicennia can only be dispersed by its floating seedlings. Yet it is noteworthy that although Avicennia seedlings appear, to a marked degree, less fitted for ocean transport than those of Rhizophora and Bruguiera, the species have a much wider distribution. Avicennia officinalis has a cosmopolitan distribution in the tropics and beyond, occurring as it does on the Atlantic and Pacific coasts of America, on both coasts of Africa, over Asia and Australia, as well as in New Caledonia and New Zealand, but not in Polynesia (Bot. Chall. Exped., III., 178).... I have now gone far enough to show that the tendency displayed by the seeds and fruits of several of the plants of the mangrove-formation to germinate either on the tree or in the floating drift of estuaries has not affected the general distribution of the species in its main outlines. Few fruits are found more often in a germinating condition in the floating drift of the Rewa River in Fiji than those of Barringtonia racemosa, yet the species ranges from the African East Coast eastward to Polynesia. Seedlings as well as seeds or fruits, whether or not in a germinating condition, are, therefore, able in such cases to disperse the species.

This readiness of the floating fruits of plants of the mangrove formation (excluding the viviparous species) to germinate in the estuaries is, I am inclined to think, due in the main to the strain of vivipary that runs through nearly all the plants of the mangrove-swamp and of its borders. It would, indeed, appear that the viviparous habit (the capacity of germinating on the plant) which finds its extreme development in Rhizophora and Bruguiera of the Fijian swamps is represented in its earliest stage in the readiness of the floating fruits of Barringtonia racemosa, Carapa obovata, &c., to germinate in the Fijian estuaries, and as remarked in [Note 37] there is a suspicion of vivipary in the instances of both the species just named. Intermediate cases, as that of Laguncularia in the Ecuador swamps, occur in other regions with species where germination only takes place at times on the plant. This subject is, however, generally discussed in [Chapter XXX.] and need not be further dealt with here.

A predisposing cause of the germination of floating seeds and fruits in tropical estuaries would seem to be afforded by the super-heating of the water of the estuary. This came under my notice both in the Rewa River in Fiji and in the Guayaquil River in Ecuador, where the water of the estuary is often noticed to be some degrees warmer than that of the sea outside, and of the water from the river above the estuary. (See [Note 38].)

We come now to the subject of the non-germination in tropical estuaries of the floating fruits of the beach-trees, such as Barringtonia speciosa and Cerbera Odollam, that in the Pacific islands may contribute to river-drift. Such trees may grow on the banks of the estuary, and their fruits would thus readily fall into the water; but in the Rewa estuary in Fiji it was evident that the fruits and seeds of beach-plants, such as Scævola Koenigii, are also brought in by the tide. The seeds of Morinda citrifolia were often noticed in the Rewa drift together with the fruits of Heritiera littoralis, which is both a beach and a swamp plant, but never in a germinating condition. The same remark applies also to the fruits of beach trees found afloat in the sea between the islands, such as Cordia subcordata, Guettarda speciosa, and Terminalia. It is possible that a few of these plants, as in the case of Barringtonia speciosa, display traces in the structure of their fruits of a lost viviparous habit. (See [Note 50].) It is pointed out in discussing Guettarda that germination is much more easily induced than one would expect in the case of fruits with such a hard ligneous putamen.

An interesting subject is presented in the abortive germination of the floating seeds of many plants of the Leguminosæ and Convolvulaceæ both at sea and in a tropical estuary. My conclusions on this matter are based partly on observations made in Fiji, but mainly on the results of numbers of experiments, this being unavoidable, since the abortive germination causes the sinking of the seed. The principal determining cause of the germination in water of one of these floating seeds is evidently to be sought in the temperature of the water, it being immaterial for the earliest stage of germination, as many of my experiments indicate, whether the seed or fruit is afloat in the sea or in the river. In these flotation experiments, when conducted under warm conditions with sea-water, the earliest signs of germination were frequently displayed in the softening, swelling, and sinking of the seed. If the swelling seed is taken out in time and planted after a preliminary soaking in fresh water, the germinating process is at once resumed and is often successfully and rapidly completed; but if the seed is allowed to remain in the vessel after it has absorbed sea-water the vitality of the embryo is destroyed and the seed decays.

That many seeds would fail from this cause to cross an ocean my experiments repeatedly demonstrated. Nor does the appearance of a seed afford any indication of its probable failure to cross an ocean. Some seeds of Mucuna, as far as their hard coverings could guide one, would seem to be quite secure from such a risk. The stony seeds, for instance, of M. urens D.C. look as if they might safely be transported by the currents round and round the globe; and De Candolle very rightly placed this species in his scanty list of plants dispersed by currents. Yet few seeds are more treacherous when their buoyancy in sea-water is tested in a warm place, as in a hot-house. They may take up water, swell, and sink in a week, or they may float unharmed for a year.

The seeds most exposed to this risk are those of the Leguminous giant climbers, the lianes of the coast and inland forests of the islands of the tropical Pacific. They belong to the genera Mucuna, Strongylodon, &c.; and thus several of the plants that constitute for the student of plant-dispersal the enigmas of the Pacific are here included. The seeds of Mucuna are especially liable when afloat in sea-water under warm conditions to display the early signs of germination, swelling up and sinking to the bottom of the vessel, a process, however, soon arrested and followed by the death of the embryo unless the seed is removed in time. Yet the seeds of this genus are notably long “floaters.” Those of an American species, variously designated as Mucuna pruriens D.C. and M. urens D.C., have long been known to be washed ashore together with the seeds of Entada scandens on the western shores of Europe, and particularly on the Scandinavian coast, where they form regular constituents of what the Scandinavian botanists correctly term the Gulf-stream Drift.

Mucuna urens D.C. occurs with other American shore-plants that are dispersed by the currents on the African West Coast; and there is no reason to doubt that its seeds perform the trans-Atlantic voyage. It is found in Polynesia, in Hawaii, in the Marquesas, and according to Reinecke also in Samoa; and probably it occurs in other groups. The specific determinations of the genus, however, need thorough overhauling, so that it is not possible to deal more than in general terms with the distribution of a species. The distribution of Mucuna urens in the Pacific is, however, irregular, and no doubt this is to be connected with the uncertain behaviour of its seeds when transported by tropical currents. The seeds would, I venture to think, often sink through abortive germination in the warm areas of equatorial seas.

When in Hawaii I kept ten of the seeds of this species (M. urens D.C.) in sea-water for four and a half months, none of them sinking in that period, the temperature of the water rarely reaching over 80°F., the average daily temperature being 76-77°. However, when four years afterwards in England I placed five of the seeds obtained at the same time in sea-water under conditions where the water-temperature ranged for the first few weeks between 75° and 90°, three of them began to swell within ten days, and on removal at once germinated healthily. The remaining two were afloat at the end of twelve months, and when planted one of them germinated a month afterwards.

Having experimented on the seeds of about half a dozen different species of Mucuna in sea-water, all with buoyant qualities, it is possible for me to lay down the general rule for the buoyant seeds of the genus that sinking is the result of an attempt at germination, which, as before observed, proves abortive unless the seed is removed in time. It is obvious that the gardener wishing to raise plants of this genus without delay might profitably adopt the method of keeping them afloat in water at a temperature of 80-90° F. until they begin to swell, which may happen in some cases in a few days. Sea-water seems to produce the most rapid results.