It might seem strange that the seeds of Entada scandens should come into the category of seeds with a specific weight near that of fresh water; yet my observations in Fiji indicate that such is the case. In the discussion of this plant in [Chapter XVII.] it is pointed out that, as a rule, not more than a fourth will float in a river when they are first freed from the pod, and not more than fifty per cent. will float in the sea. Those that float, however, in either water will usually float indefinitely. The seeds also of Mucuna gigantea D.C. are not very much lighter than fresh water. Out of six seeds that floated in sea-water buoyantly, five floated in fresh water, but heavily.
It is of interest to notice in this connection that the mangrove-seedlings produced by germination on the tree, as in the case of Rhizophora and Bruguiera, have a mean specific weight somewhere between fresh water and sea-water. This is often illustrated in a curious way, when the seedling has not been prematurely detached from the tree. Thus in the sea off the coast of tropical America, as well as amongst the Fijian Islands, the seedlings of Rhizophora mangle are as a rule to be observed floating horizontally; whilst in the fresh or brackish water of the estuaries of these regions they assume a more or less vertical position, only the plumular portion protruding above the water. This is also true of the seedlings of Rhizophora mucronata, the Asiatic mangrove, and of Bruguiera rheedii. This subject is discussed in detail in [Chapter XXX.]; but it may be here remarked that a good proportion of Rhizophora seedlings, when detached in the mature condition from the tree, have no buoyancy, between 20 and 50 per cent. going to the bottom when they fall into a river, and between 5 and 10 per cent. when they drop into the sea. The navigator might often obtain an indication of the density of the sea-surface when approaching the mouth of a large river by observing the floating Rhizophora seedlings (a foot long) which are carried out to sea in numbers. If he sees them from the deck of his ship floating horizontally he will infer that the surface-water is mainly sea-water. In ordinary fresh water when they float vertically he would not be able to distinguish them from floating seeds or fruits.
It has only been possible to treat this subject in an illustrative manner. More details might have been given; but I have gone far enough to bring the following points into relief and to justify one in drawing the conclusions to be now stated.
Most seeds and seedvessels in respect of their floating powers tend to gather around two centres or means and to form two groups, the sinking group and the buoyant group.
In the sinking or non-buoyant group, which includes 80 per cent. of the whole, the mean specific weight is considerably greater than that of sea-water (1·026), which would require its density to be raised to 1·100 in order to serve as a floating medium for many of them.
In the buoyant group the mean specific weight is much lighter than that of fresh water (1·000); and from this it is to be inferred that in oceans of fresh water the same fruits and seeds in the mass would be distributed by the currents that are transported by them at the present day. Even though it arose from an ocean of fresh water, the coral island would receive the same littoral plants through the agency of the currents that it receives under its existing conditions.
The number of plants with seeds or fruits between fresh water and sea-water in specific weight is very small, probably not over 2 per cent. of the total. Most seeds or fruits that sink in fresh water sink also in sea-water, and most that float in sea-water float also in fresh water. Nature has thus created a wide gap between the sinking and the floating seed; and nearly all of the work of the present currents in plant-dispersal might have been effected, so far as the density is concerned, in fresh water. She has not arranged seeds and seedvessels in what the statistician would term “a good series.” As indicated in the diagram below, there are two series that meet in the neutral region where the density is between fresh water and sea-water, but with culminating points placed on the one side far above the density of sea-water and on the other far below that of fresh water.
Relation of the specific weight of seeds and fruits to the density of fresh and sea-water.
| Percentage. | Heavier than sea-water, or +1·026. | Between fresh and sea-water, 1·000-1·026. | Lighter than fresh water, or -1·000. |
|---|---|---|---|
| 100 | ![]() | ||
| 80 | |||
| 60 | |||
| 40 | |||
| 20 | |||
| 0 | |||
I do not, therefore, think that the buoyancy of seeds and fruits has had any relation either in the present or in the past to the density of the sea. Nor is it to be supposed that any slight variations in density in the course of ages would have materially affected the dispersal of plants by currents. It is to be inferred that the physicist and the geologist would be prepared to grant only small variations, such as a change from 1·020 to 1·025. It will be gathered from what has been said before that changes of this nature would have a very slight influence on the buoyancy of seeds and fruits, since the plants they would affect would be very few. The change that the student of plant-dispersal would require to produce any marked alteration in distribution would be in amount alarming to the physicist.
