The buoyant seeds of Erythrina indica are well known to be dispersed by the currents; whilst those of E. monosperma, as obtained from Hawaii, have no floating power and sink at once, or in a day or so, even after drying for two years. In Tahiti the first-named species is a characteristic plant of the beach, whilst the last grows there in the valleys and on the mountains up to elevations of 700 to 800 metres. We have now to inquire whether there is any decided affinity between the two species, and whether the divergent characters of the inland species can be connected with its station. With regard to the first query we may quote in reply the observation of Drake del Castillo, that as concerning the foliage and the inflorescence E. monosperma is very nearly related to E. indica, differing only from it in the more hairy calyx, in the more permanently tomentose and much shorter pod, and in the paucity of seeds (one or two in number).
We will now see whether it is possible to connect these differences in character with differences of station. Neither Nadeaud nor Drake del Castillo give precise descriptions of the station of Erythrina monosperma in Tahiti; but Nadeaud and Lepine remark that it grows on precipices as well as in the valleys on the north or dry side of the island; and we may infer that it affects exposed dry rocky stations. In Hawaii, according to Hillebrand, it is found on the dry rocky hills and plains of all the islands up to 1,000 feet. I was particularly interested in this tree whilst in the group, and found it in the large islands of Maui and Hawaii thriving in rocky arid districts of little rainfall, accompanied by Cactus opuntia, Ricinus communis, and Cæsalpinia bonducella. It is often to be observed on scantily vegetated lava-flows, a solitary tree growing here and there out of a crack in the old lava, or it may dot the rocky slopes of some barren declivity. I found it in the dry gulches behind Lahaina at elevations of 800 to 1,200 feet above the sea, growing amongst huge blocks of stone in clumps of ten or twelve trees. When one contrasts the inland station of E. monosperma with that of E. indica on the beach where the atmosphere is more humid and the conditions more suited for plant-growth, it appears probable that the differences between these two species may be largely connected with station, especially as regards hairiness and the diminished size of the pods.
Assuming, therefore, that Erythrina monosperma is but the inland form of E. indica and that the differences between the two species are mainly an affair of station, we have next to account for the occurrence of the inland species in Hawaii without the littoral species. The agency of currents in explanation of the existence of E. monosperma in Hawaii is at once excluded, since the pods dehisce on the tree, and the seeds, as already remarked, have no floating power. Nor does it seem likely that beans half an inch (13 mm.) long could be transported unharmed in a bird’s stomach over the two thousand miles of sea that intervene between Tahiti and Hawaii. Yet one cannot doubt that the pyrenes and “stones” of genera like Coprosma, Nertera, Cyathodes, and Osteomeles have been carried by frugivorous birds to Hawaii. But a bean is somewhat different from the crustaceous pyrene of Coprosma or the hard “stone” of Cyathodes; and although, as indicated by the occurrence of an endemic species of Erythrina in Fernando Noronha, birds may carry large beans unharmed over a couple of hundred miles of sea, one hesitates to conclude that they could effect this when the tract of ocean to be traversed is ten times as great. There are again reasons for believing that the seeds of Erythrina monosperma are particularly ill-suited for dispersal by birds, since, notwithstanding their hardness, they soon absorb water through the micropylar opening; and they germinated so readily in my experiments that the digestive juices in a bird’s stomach would probably soon find access and destroy the kernel. It is, however, known from the observations of the Messrs. Layard in New Caledonia that a small crow and different species of parrots feed on the seeds of Erythrina, and they may aid in the local dispersal (Ibis, vol. 6, 1882).
To admit man’s agency in carrying to Hawaii the seeds of a tree which is only useful in supplying him with light wood for his outriggers and his fishing-net floats would compel us to place in the same category a great number of plants in some way useful to him which are recognised as indigenous. The Polynesian ransacks the vegetable world for his wants, and carries with him in his migrations only his food-plants and the seeds of his sacred trees.
There remains then the possibility that the parent species, Erythrina indica, was once in Hawaii but has since disappeared. In order to establish this, it will be requisite to show not only that the extinction of a shore-plant is probable, but also to explain why the new species has selected such arid inland localities for its stations, to account for the loss of buoyancy of the seeds, and, if possible, to give an instance of the production of a new species of Erythrina in a small isolated oceanic island.
A study of the special circumstances of Hawaii leads one to conclude that a shore-tree may become extinct in one of two ways. It may be exterminated by insect pests, or it may be forced inland through unsuitable coast-conditions and there be lost in the resulting new species. One characteristic shore-tree, Cordia subcordata, has indeed been almost exterminated by insects, and even Erythrina monosperma is now from the same cause on its road to extinction (see [Note 53]); but there is no indication of their leaving modified descendants behind that are pest-proof. The most probable view then is that the littoral tree, having been driven inland through the unsuitability of the coast-conditions, such as lack of beaches or want of moisture, has there become modified. This is what has really happened, as I have shown, with Cæsalpinia bonducella in Hawaii. As indicated in [Chapter XVII.], this characteristic beach-plant has here been driven off the beach. There would thus be no difficulty in assigning a reason why a littoral tree like Erythrina indica should select arid localities when it extends inland, since, as is pointed out in [Chapter IV.] and in other parts of this work, the plants of the beach and of the arid inland district possess the same xerophilous habit.
With regard to the loss of buoyancy of the seeds in the case of Erythrina monosperma, it may be remarked that this is precisely what has happened with the seeds of Cæsalpinia bonducella, its usual associate on the old lava-wastes in Hawaii, and with an inland species of Cæsalpinia in Fiji. It is argued that the same thing has occurred with the inland Hawaiian species of Canavalia and Sophora, as shown in later pages of this chapter. It has certainly happened with the inland form of Afzelia bijuga in Fiji, a tree dealt with in [Chapter XVII.] These are all Leguminous genera; and in all of them, with the exception of Cæsalpinia, where the floating power arises from a central cavity in the seed, the seeds of the littoral species possess, like Erythrina indica, buoyant kernels. Whilst most littoral plants with buoyant seeds or fruits retain the floating capacity of the seed or fruit when they extend inland, the Leguminosæ often offer exceptions to the rule.
That inland endemic species of Erythrina can be developed in isolated islands is illustrated by the existence in Fernando Noronha, some two hundred miles from the coast of Brazil, of a peculiar species, E. aurantiaca, described by Mr. Ridley. Here also is found an inland species of Guettarda peculiar to the locality; but in neither genus does the littoral species occur.
Many difficulties will yet have to be explained before it can be finally established that Erythrina monosperma has been derived from E. indica or some similar shore species that was originally dispersed by the currents; but we are almost driven towards such a view, since it is hard to believe that the beans were carried to Hawaii by birds over some two thousand miles of sea. Observers in other regions where littoral and inland species of the genus occur may perhaps devote their attention to the relation between the two; and if they are able to supplement observation and experiment by a microscopical investigation, some interesting results would be obtained. For instance, I would suggest that in Queensland a thorough examination of the littoral E. indica and the inland E. vespertilio might be undertaken; or perhaps there may be some other littoral form.
With the two other Leguminous genera, Canavalia and Sophora, to be immediately discussed, we have for the most part the same questions raised. Both possess wide-ranging current-dispersed littoral species in other parts of the Pacific, but only endemic inland species with non-buoyant seeds in Hawaii. The pivot of the discussion will be here also the impracticability of these inland species ever having reached the Hawaiian Islands through the agency of the currents, and the great difficulty in believing that their beans were carried unharmed by birds over half the breadth of the Pacific Ocean. If we reject alike the current, the bird, and the parentage of a lost littoral species, we must fall back on the continental hypothesis, against which in the case of Hawaii the evidence is overwhelming.