Coming to the causes of the floating-power of the seeds, we find that with the buoyant seeds the kernel floats, whilst with the non-buoyant seeds it sinks, the seed-tests in neither case possessing any floating-power. In this respect, therefore, the seeds of Afzelia bijuga belong, with the seeds of some other Leguminous littoral plants of the Pacific islands, such as Canavalia obtusifolia, Erythrina indica, and Sophora tomentosa, to the second section of the second non-adaptive group of buoyant seeds (page [107]). But though we can in a measure explain the cause of the buoyancy, we are still ignorant of the manner in which the difference in the buoyant behaviour of coast and inland seeds has been brought about. It is possible that this may be connected with another difference between the coast and inland seeds, the latter being markedly smaller, and it is noteworthy that in my experiments the smaller seeds were generally those that sank. (Whilst the inland seeds averaged between 810 and 1 inch, or 20 to 25 mm., in greatest diameter, 12 to 16 being required to make an ounce, the coast seeds measured 1 to 1210 inch, or 25 to 30 mm., and only 10 or 11 were needed to weigh an ounce.)

There can be no question that the seeds are at times transported by the currents over wide tracts of sea, and this no doubt explains the occurrence of Afzelia bijuga in oceanic islands. They may be usually seen lying free in numbers on the ground beneath the tree or else still inclosed in the fallen dehiscing and decaying pods; and they might be swept sometimes into the sea or washed down into an adjacent stream. They thus came under my notice amongst the stranded beach drift at the mouths of estuaries in Fiji. But it is remarkable that the seeds have not apparently been recorded from the beach drift of other tropical regions. Penzig does not note them amongst the seeds stranded on the shores of Krakatoa. They did not occur amongst my collections from the beaches of Keeling Atoll or of the south coast of Java; nor does Schimper mention them amongst the drift of the Java Sea. In the Botany of the “Challenger” Expedition the species is not even referred to in any connection. Although, however, the capacity of these seeds for dispersal by currents is for the first time established by me, their fitness in this respect was surmised by Schimper (p. 191), when he placed the species in his list of tropical shore plants evidently distributed by the currents.

It will thus be gathered that we have yet much to learn in this matter; and I would recommend any resident in the tropics to take up this subject. When indeed we remember the fine adjustment existing between the specific weight of the seeds and the density of water, and recall the unknown factor determining the difference in buoyancy between the kernels of coast and inland seeds, we can understand how under particular conditions in certain portions of its range the seeds of Afzelia bijuga may perhaps never possess any floating power. It would seem, in fact, that the seeds are much more buoyant in the Western Pacific than they are in the Java Sea; or it may be that the tree is much less frequent; or that the stranded seeds are soon destroyed by crabs, such as is the fate of much seed-drift on the Keeling beaches; or lastly that, as in Diego Garcia, rats in destroying the fallen seeds are bringing about the extermination of the species.

Summary relating to Afzelia bijuga.

(1) Assuming that the genus has its home in the African continent, and that the species have frequently a riverside station, it is argued that the distribution of the genus on both sides of that continent can only be explained by its dispersal by rivers from a centre in the interior.

(2) Afzelia bijuga, a widely distributed shore tree of tropical Asia, occurs in Fiji both at the coast and in the inland forests.

(3) This double station is associated inter alia with a different buoyant behaviour of the seeds, those of the coast trees usually floating for long periods, whilst those from inland generally sink.

(4) There can be no doubt that this widely ranging littoral tree has been dispersed by the currents; but the specific weight of the coast seeds is on the average but slightly less than that of sea-water; and it is to this fine adjustment, always liable to be disturbed by variations in the environment, that the irregularities in the distribution of the species are to be attributed.

Entada scandens (Benth.).

The story of Entada scandens, a plant familiar to many of my readers under the name of the Queensland Bean, is a story of three continents, Africa, Asia, and America. From the point of view of its dispersal two features at once attract attention in the case of this giant-climber; in the first place its wide distribution over the tropics of the Old and New Worlds, and in the second place the great capacity of its large seeds, often two inches across, for dispersal by the currents. But before discussing these matters it will be necessary to glance at the distribution of the genus, since much light will thereby be thrown on some of the numerous difficult points affecting this extremely interesting tropical plant. Of the thirteen species enumerated in the Index Kewensis, seven are African, three are American, one is Burmese, one hails from Madagascar, and, lastly, there is the world-ranging Entada scandens, concerning whose home botanists are not agreed. Most of the species would seem to be inland plants, whilst Entada scandens thrives both inland and at the coast. Africa would thus appear to be, as with Afzelia, the principal home of the genus, but with America as a subsidiary centre.