I pass now to the discussion of the buoyancy of the seeds. Considering that both species occur in oceanic islands, and that the currents are active agents in transporting the seeds, their behaviour under experiment appears at first sight to be full of anomalies. Thus, it was ascertained at Kew (Bot. Chall. Exped. iv., 301), both with comparatively fresh and with older seeds, that those of Cæsalpinia bonducella floated in salt water, whilst those of C. bonduc sank; but in the record given of the experiment no mention is made of the original station of the parent plants; and it will be shown later on that the station of the plant, whether at the coast or inland, has an important determining influence on the buoyancy.
In Fiji I found that almost without exception the seeds of littoral plants of Cæsalpinia bonducella floated both in sea-water and in fresh water. On the other hand, in Hawaii the seeds of this species, obtained from three typical localities removed inland from the beach, sank without exception, even after drying for several months; and the only buoyant seed noted in these islands was a solitary seed collected from the beach drift. In Hawaii, however, as before remarked, the species is not strictly a littoral plant, occurring as it does in the lower levels, but not necessarily in the vicinity of the coast. In the case of seeds of littoral plants of C. bonduc in Fiji, I found that sometimes all floated in sea-water and sometimes only a portion of them, whilst their specific weight was on the whole rather greater than that of the seeds of the other species. Thus, in one experiment half the seeds floated in sea-water and a quarter in fresh water, whilst with seeds from another locality 90 per cent. of the seeds floated in sea-water and 80 per cent. in fresh-water; and in a third set of seeds all floated in both waters.
The above experiments on Fijian seeds all relate to littoral plants. In the instance, however, of the inland species from the mountains of Vanua Levu, all the seeds sank in sea-water, even after being kept for five years. If we follow the indications of these several experiments we shall find that Cæsalpinia presents another illustration of the general principle established in [Chapter II] that the seeds of inland plants sink and those of coast plants float.
My data, therefore, show that with the seeds of Cæsalpinia buoyancy goes with station and not necessarily with species. It is probable, therefore, that with the two widespread species, C. bonducella and C. bonduc, varying results will be obtained with seeds from different localities, whether insular or continental, according to the original station. The typically buoyant seeds of the former species may, as we have seen in Hawaii, lose their floating powers when they grow inland; and the seeds of an inland species from the mountains of Fiji sink at once. It is essential in interpreting the results of experiments on the seeds of these plants to be acquainted with the stations; and in this respect those of the Tahitian plants may be regarded as probable test cases. We have seen that in Tahiti, C. bonduc is an inland plant, and C. bonducella usually a beach plant; and I have no doubt that experiments in that island on the seeds of these two species from the particular stations just referred to will give results in agreement with the principle here laid down.
With reference to the duration of the floating powers of these seeds it may be observed that a seed of Cæsalpinia bonducella, originally found stranded on the beaches of Keeling Atoll, floated after a year in sea-water as buoyantly as at the commencement of the experiment. Seeds of Fijian littoral plants of both C. bonducella and C. bonduc floated in my experiments after two and a half years’ immersion in sea-water, showing no change whatever. Some of the seeds removed at the end of the first year were filed and placed in soil, when they germinated healthily. In [Chapter IX] it is pointed out that some buoyant seeds of other Leguminous plants, such as Mucuna urens, would be apt to germinate abortively and to sink in crossing the more heated areas of tropical seas. The seeds of Cæsalpinia, judging from my experiments and observations noted on page [84], seem to be quite proof against such risks. This was well brought out in an experiment where seeds of the two species of Cæsalpinia were kept afloat for two and a half years in a vessel of sea-water together with seeds of Mucuna and Strongylodon. None of the Cæsalpinia seeds attempted to germinate in the sea-water; but with the other genera some of the seeds began to germinate, and sank in the course of the first warm season, when the water-temperature ranged from 75 to 90° Fahr.
The seeds develop their buoyancy during the great contraction that, as before described, marks the final setting of the seed-coats and the ultimate maturation, as it is termed, of the seed. During this shrinking process the kernel also shrinks within the seed-tests, and cavities are thus produced within the seed-shell, on the relative size of which depends the buoyancy of the seed, neither the seed-shell nor the kernel possessing independent floating-power. These cavities, as illustrated in the figures given in [Chapter XII], are of two kinds. That usually produced, being the one that mainly determines the buoyancy, is a large central hollow caused by the arching outwards of the cotyledons during the shrinking process, such as is found also in the seeds of Entada scandens, Mucuna urens, and some other Leguminous littoral plants. With such seeds the kernel never rattles when the seed is shaken, since the cotyledons lie in close contact with the seed-shell. The other kind of cavity is produced between the seed-shell and the kernel by the general or partial shrinking of the kernel away from the shell, the cotyledons remaining in apposition, as shown in the figures. When the shrinking away from the shell is general, the kernel lies loose within the shell, and the seed rattles when shaken. When the shrinking is partial the cavity is on one side of the seed and the kernel is fixed.
Professor Schimper (p. 164) remarks that the buoyant seeds of Cæsalpinia bonducella all rattle when shaken, and that it is to the incomplete filling of the seed-cavity, thus indicated by the loose kernels, that the buoyancy of the seed is due. The rattling of the kernel was, however, quite exceptional in the seeds handled by me, even in the case of originally buoyant seeds kept for five years. Seeds with loose kernels were, in fact, more frequent with non-buoyant seeds than with those that floated. Thus in Fiji I found that whilst with the buoyant seeds 17 to 20 per cent. had loose kernels, with non-buoyant seeds the proportion was as much as 60 per cent.
The normal cause of buoyancy is, therefore, a large intercotyledonary cavity with the cotyledons lying in close contact with the seed-shell; but the two kinds of cavity may sometimes be combined. Out of a number of buoyant seeds of Cæsalpinia bonducella examined by me, 80 per cent. owed their buoyancy solely to a large central cavity (4 to 5 mm. across). In 6 per cent. it was due solely to the shrinking of the kernel away from the seed-shell; whilst in 14 per cent. it was to be attributed partly to a reduced central cavity (2 to 3 mm. wide), and partly to a space outside the kernel. The only difference noted in the structure of the buoyant seeds of C. bonduc was that the two kinds of cavities were more often combined.
The reason of the absence of floating power was clearly indicated in the non-buoyant Hawaiian seeds, where there was no central cavity, or it was represented by a narrow slit. The solitary buoyant seed found in the beach drift had a typical large central cavity. With the non-buoyant seeds of the inland species of the mountains of Vanua Levu it was ascertained that two-thirds had loose kernels with the cotyledons closely appressed. In the others there was a lateral cavity outside the kernel, the central cavity being only represented by a slit, a hair’s width in breadth. In the non-buoyant seeds of C. bonduc, the central cavity was only 2 to 3 mm. wide, and the lateral cavities were small.
Respecting the influence of “station” in producing the differences in buoyancy, it cannot be said to be connected with the maturation of the seeds of inland plants under more humid conditions than those which prevail at the coast. In Fiji some of the littoral plants with buoyant seeds grow on the mangrove-trees in the shade and humidity of the swamps; whilst in Hawaii the inland plants of Cæsalpinia bonducella with their non-buoyant seeds thrive in exposed arid situations in districts of little rainfall, such as on scantily vegetated lava-flows. With non-buoyant seeds, where there is little or no cavity, the cotyledons are always thicker and moister than in the case of the seeds that float. Though associated with differences in station, as implied in the terms “coast” and “inland,” the cause of the difference in buoyancy is not connected with different degrees of humidity, but with some other cause or causes acting on the spot which, while they favour the drying of the kernel in coast plants before the seed-coats finally set, impede it in the inland plants. That the seed does not subsequently acquire floating power, even after years of drying, was shown in several of my experiments.