A, B, and C are front views of three surfaces.

A has its full H.E., and therefore, from the point of view from which we are at the moment considering efficiency, it has its best lift-drift ratio.

B and C both possess the same surface as A, but one is inclined upwards from its centre and the other is straight but tilted. For these reasons their H.E.'s are, as illustrated, less than in the case of A. That means less vertical lift, and, the drift remaining the same (for there is the same amount of surface as in A to produce it), the lift-drift ratio falls.

THE MARGIN OF POWER is the power available above that necessary to maintain horizontal flight.

THE MARGIN OF LIFT is the height an aeroplane can gain in a given time and starting from a given altitude. As an example, thus: 1,000 feet the first minute, and starting from an altitude of 500 feet above sea-level.

The margin of lift decreases with altitude, owing to the decrease in the density of the air, which adversely affects the engine. Provided the engine maintained its impulse with altitude, then, if we ignore the problem of the propeller, which I will go into later on, the margin of lift would not disappear. Moreover, greater velocity for a given power would be secured at a greater altitude, owing to the decreased density of air to be overcome. After reading that, you may like to light your pipe and indulge in dreams of the wonderful possibilities which may become realities if some brilliant genius shows us some day how to secure a constant power with increasing altitude. I am afraid, however, that will always remain impossible; but it is probable that some very interesting steps may be taken in that direction.

THE MINIMUM ANGLE OF INCIDENCE is the smallest angle at which, for a given power, surface (including detrimental surface), and weight, horizontal flight can be maintained.

THE MAXIMUM ANGLE OF INCIDENCE is the greatest angle at which, for a given power, surface (including detrimental surface), and weight, horizontal flight can be maintained.

THE OPTIMUM ANGLE OF INCIDENCE is the angle at which the lift-drift ratio is highest. In modern aeroplanes it is that angle of incidence possessed by the surface when the axis of the propeller is horizontal.

THE BEST CLIMBING ANGLE is approximately half-way between the maximum and the optimum angles.