One man complained that his car would start out well and run all right as long as he was going away from home, but as soon as he turned homeward it would begin to act up. He wanted to know if the car had the wanderlust. Inquiry developed the fact that the trips he spoke of on the going trip were with the wind and returning against it. The added force of the wind over the engine cooled the engine too much, and he was advised to cover the radiator under such circumstances. He reported no trouble after trying it.

Of course, sometimes, the skipping can be overcome by enriching the mixture by the dash control, but with the present heavy gasoline the enriched mixture does not seem to do much good and is simply adding to the supply of gasoline which already is refusing to vaporize. Therefore it seems to be the stove and the dishrag for the cold engine.

CHAPTER XXVIII
THE COOLING SYSTEM IN WINTER

While there are many sections of the country where it is necessary to put the car away for that portion of the year when the ground is covered with snow and ice, and for that reason many cars are put in storage, yet there are sections where this is not necessary. And likewise, in the Northern cities, where the snow is cleared from the streets after every storm, the improvement in carburetors and the adoption of heating devices have made it possible to keep the car in commission where formerly it was thought impossible.

There are two things necessary if the car is to be operated in winter, the first of which is some anti-freezing solution for the cooling system; the second is a device for warming the mixture before admission to the cylinders.

Many things have been tried for making the cooling system freeze-proof. The most common are salt, glycerin, and alcohol. Any one of these in the proper proportion will insure against freezing. They are not equally desirable, however. Salt has a tendency to set up electrolitic action where iron and brass parts are combined in the cooling system, but four pounds of salt to the gallon will give a solution which will not freeze until seventeen degrees below zero, Fahrenheit, is reached. Glycerin will keep the water from freezing, but it is expensive and if rubber hose is used to connect radiator and the cylinder pipes, glycerin will cause it to decompose rapidly.

Denatured alcohol probably is the best to use, mixed with water in proportion as the cold to be expected may demand. Twenty per cent. of alcohol will give protection to five degrees above zero; thirty per cent. to nine degrees below zero, and thirty-five per cent. to sixteen degrees below. The owner must not make the error of using a mixture which will protect him only for the average low temperature of his locality. For thirty years the average minimum for the vicinity of New York City was twelve degrees above zero. The man who thought he was playing safe with a twenty-per-cent. solution would have ruined his engine on one of the days while this material was being prepared, for the temperature went to twenty below in the suburbs and to seventeen below in the city. Unless the owner had foresight enough to drain out the cooling solution there would have been burst radiator and pipes, and perhaps a cracked cylinder, or at least the water-jacket, to be replaced. Even a thirty-five per cent. solution would not have saved the damage.

Probably a combination of alcohol and glycerin will suit the particular owner a little better than alcohol alone, since there is less evaporation, and a single dose of glycerin will last the entire season, only alcohol and water needing to be added to replace that boiled away or evaporated. Half alcohol and half glycerin is the proper proportion to be added to the water. It has one advantage, that it freezes quite a bit lower than the alcohol alone. While there are many kinds of solutions sold which are “guaranteed,” the owner can make his own at less expense, even considering prices of alcohol and glycerin. The same treatment must be given to an acetylene gas producer, since the water will freeze in that and burst the tank.

Another thing which must be taken into account in winter is the warming of the mixture for starting so that it does not condense the moment it strikes the cold cylinder walls. Modern cars are provided with means for accomplishing this when the engine has started, but the hot-water jacket and hot-air furnace depend upon a warmed-up engine for their availability, and for starting other means must be devised. It may often be wise to drain off the anti-freeze solution from the cooling system and substitute hot water until the engine is well warmed up, then replacing the anti-freeze mixture. There also are various devices for heating the carburetor and intake manifold while the engine is warming up. There is an electric heater, where one has current in the garage and other ways of accomplishing the same thing. If no better means is at hand a hot-water bottle about half full, so that it can be wrapped about the manifold, may do it all right; or a cloth wrapped about the manifold and carburetor without covering the air intake, and a kettle of hot water, may do it satisfactorily. These methods are considered more at length in the preceding chapter.

It will doubtless be found necessary to prime the engine in starting in cold weather, and it is wise to carry a squirt can for this purpose, though a piece of waste saturated from the carburetor drip cock and squeezed over the priming cup will do the trick. If there are no priming cups it means taking out the spark plugs.