The following considerations led me to attempt an experiment the result of which promised, I thought, to throw light on the question.

It will be observed that, according to the first hypothesis, the velocity with which light traverses a body must vary with the motion of that body. If the motions of the body and the ray are like-directed, the velocity of light ought to be increased by the whole velocity of the body.

If the æther be perfectly free, the velocity of light ought not to be altered by the motion of the body.

Lastly, if the body when moving only carries with it a portion of the æther, then the velocity of light ought to be increased by a fractional part of the velocity of the body and not by the whole velocity, as in the first case. This consequence is not as evident as the two preceding ones, though Fresnel has shown that it is supported by mechanical considerations of a very probable nature.

The question then resolves itself to that of determining with accuracy the effect of the motion of a body upon the velocity with which light traverses it.

It is true that the velocity with which light is propagated is so immensely superior to any we are able to impart to a body, that any change in the first velocity must in general be inappreciable. Nevertheless, by combining the most favourable circumstances, it appeared to be possible to submit to a decisive test at least two media, air and water, to which, on account of the mobility of their particles, a great velocity may be imparted.

We owe to Arago a method of observation, founded on the phænomena of interference, which is well suited to render evident the smallest variation in the index of refraction of a body, and hence also the least change in the velocity with which the body is traversed by light; for, as is well known, this velocity is inversely proportional to the refracting index. Arago and Fresnel have both shown the extraordinary sensitiveness of this method by several very delicate observations, such as that on the difference of refraction between dry and moist air.

A method of observation founded upon this principle appeared to me to be the only one capable of rendering evident any change of velocity due to motion. It consists in obtaining interference bands by means of two rays of light after their passage through two parallel tubes, through which air or water can be made to flow with great velocity in opposite directions. The especial object before me necessitated several new arrangements, which I proceed to indicate.

With respect to the intensity of light, formidable difficulties had necessarily to be encountered. The tubes, which were of glass and