These values are almost identical; and what is more, the difference between observation and calculation may be accounted for with great probability by the presence of the before-mentioned error in estimating the velocity of the water. I proceed to show that the tendency of this error may be assigned, and that analogy permits us to assume that its effect must be very small.
The velocity of the water in each tube was calculated by dividing the volume of water which issued per second from one of the flasks by the sectional area of the tube. But by this method it is only the mean velocity of the water which is determined; in other words, that which would exist provided the several threads of liquid at the centre and near the sides of the tube moved with equal rapidity. It is evident, however, that this cannot be the case; for the resistance opposed by the sides of the tube, acting in a more immediate manner on the neighbouring threads of liquid, tends to diminish their velocity more than it does that of the threads nearer the centre of the tube. The velocity of the water in the centre of the tubes, therefore, must be greater than that of the water near the sides, and consequently also greater than the mean of both velocities.
Now the slits placed before each tube to admit the rays whose interference was observed, were situated in the middle of the circular ends of the tubes; so that the rays necessarily traversed the central zones, where the velocity of the water exceeded the mean velocity[2].
The law followed by these variations of velocity in the motion of water through tubes not having been determined, it was not possible to introduce the necessary corrections. Nevertheless analogy indicates that the error resulting therefrom cannot be considerable. In fact, this law has been determined in the case of water moving through open canals, where the same cause produces a similar effect; the velocity in the middle of the canal and near the surface of the water is there also greater than the mean velocity. It has been found that, for values of the mean velocity included between
, the maximum velocity is obtained by multiplying this mean velocity by a certain coefficient which varies from
. Analogy therefore permits us to assume that in our case the correction to be introduced would be of the same order of magnitude.
Now on multiplying