MODEL OF ARKWRIGHT’S SPINNING JENNY, 1769
From the specifications in the Patent Office
The universities of Britain were at this time in a state of educational retrogression, largely given over to a pedantic conning of the Latin and Greek classics. French education, too, was dominated by the classical tradition of the Jesuit schools, and consequently it was not difficult for the Germans to organize a body of investigators, small indeed in relation to the possibilities of the case, but large in proportion to the little band of British and French inventors and experimentalists. And though this work of research and experiment was making Britain and France the most rich and powerful countries in the world, it was not making scientific and inventive men rich and powerful. There is a necessary unworldliness about a sincere scientific man; he is too preoccupied with his research to plan and scheme how to make money out of it. The economic exploitation of his discoveries falls very easily and naturally, therefore, into the hands of a more acquisitive type; and so we find that the crops of rich men which every fresh phase of scientific and technical progress has produced in Great Britain, though they have not displayed quite the same passionate desire to insult and kill the goose that laid the national golden eggs as the scholastic and clerical professions, have been quite content to let that profitable creature starve. Inventors and discoverers came by nature, they thought, for cleverer people to profit by.
In this matter the Germans were a little wiser. The German “learned” did not display the same vehement hatred of the new learning. They permitted its development. The German business man and manufacturer again had not quite the same contempt for the man of science as had his British competitor. Knowledge, these Germans believed, might be a cultivated crop, responsive to fertilizers. They did concede, therefore, a certain amount of opportunity to the scientific mind; their public expenditure on scientific work was relatively greater, and this expenditure was abundantly rewarded. By the latter half of the nineteenth century the German scientific worker had made German a necessary language for every science student who wished to keep abreast with the latest work in his department, and in certain branches, and particularly in chemistry, Germany acquired a very great superiority over her western neighbours. The scientific effort of the sixties and seventies in Germany began to tell after the eighties, and the German gained steadily upon Britain and France in technical and industrial prosperity.
A fresh phase in the history of invention opened when in the eighties a new type of engine came into use, an engine in which the expansive force of an explosive mixture replaced the expansive force of steam. The light, highly efficient engines that were thus made possible were applied to the automobile, and developed at last to reach such a pitch of lightness and efficiency as to render flight—long known to be possible—a practical achievement. A successful flying machine—but not a machine large enough to take up a human body—was made by Professor Langley of the Smithsonian Institute of Washington as early as 1897. By 1909 the aeroplane was available for human locomotion. There had seemed to be a pause in the increase of human speed with the perfection of railways and automobile road traction, but with the flying machine came fresh reductions in the effective distance between one point of the earth’s surface and another. In the eighteenth century the distance from London to Edinburgh was an eight days’ journey; in 1918 the British Civil Air Transport Commission reported that the journey from London to Melbourne, halfway round the earth, would probably in a few years’ time be accomplished in that same period of eight days.
AN EARLY WEAVING MACHINE
From an engraving by W. Hincks in the British Museum
Too much stress must not be laid upon these striking reductions in the time distances of one place from another. They are merely one aspect of a much profounder and more momentous enlargement of human possibility. The science of agriculture and agricultural chemistry, for instance, made quite parallel advances during the nineteenth century. Men learnt so to fertilize the soil as to produce quadruple and quintuple the crops got from the same area in the seventeenth century. There was a still more extraordinary advance in medical science; the average duration of life rose, the daily efficiency increased, the waste of life through ill-health diminished.