Of first importance are those utensils that are used to collect the milk and in which it is handled while on the farm. The warm milk is first received in pails, and unless these are scrupulously cleaned, an important initial contamination then occurs. As ordinarily washed, the process falls far short of ridding the utensils of the bacterial life that is adherent to the inner surface of the pail. Then, too, all angles or crevices afford an excellent hiding place for bacteria, and it is very important to see that all seams are well soldered. Round corners and angles flushed with solder greatly facilitate thorough cleaning of utensils. Tin utensils are recognized as most satisfactory.

Shipping cans are likely to serve as greater infecting agents than pails for they are subject to more wear and tear and are harder to clean. As long as the surface is bright and smooth, it may be easily cleaned, but large utensils, such as cans, are likely to become dented and rusty in spots on the inner side. The storage of milk in such utensils results in its rapid deterioration. The action of rennet has been found to be greatly retarded where milk comes in contact with a rusty iron surface. It is also probable that some of the abnormal flavors in butter are due to the action of acid cream on iron or copper surfaces from which the tin has been worn. It is equally important that attention be paid to the care of strainers, coolers, and the small utensils. Cloth strainers are more or less of a hotbed for bacterial growth, for unless they are boiled, and then dried quickly and thoroughly, germ growth will continue apace in them, as long as they contain any moisture.

Milking machines and farm separators. The introduction of these special types of dairy machinery in the handling of milk on the farm has materially complicated the question of the care of milk. Both of these types of apparatus are much more complicated than the usual milk utensil; consequently, the danger of imperfect cleaning is thereby increased. This is still further accentuated by the fact that cleansing of utensils on the farm can never be done so well as at the factory or milk depot where steam is available. The milking machine may be easily kept in a comparatively germ-free condition, but unless this is done, it contributes its quota of germ life to the milk.

The farm separator is more widely used than the milking machine and in actual practice the grossest carelessness prevails in the matter of its care. Frequently it is not taken apart and thoroughly cleansed, but is rinsed out by passing water through the machine. It is impossible by such a treatment to remove the slime that collects on the wall of the bowl; the machine remains moist and bacterial growth can go on. Such a machine represents a most important source of contamination of milk and cream and it is probable that the widespread introduction of the hand separator has contributed more to lower the quality of cream delivered at the factory than any other single factor.

Contamination from factory by-products. The custom of returning factory by-products in the same set of cans that is used to bring fresh milk is a prominent cause of bad milk. Whey and skim milk are rich in bacterial life, and not infrequently are so handled as to become a foul, fermenting mass. If the cans used to transport this material are not scrupulously cleaned on the farm, transfer of harmful bacteria to the milk is made possible. In this way the carelessness of a single patron may be the means of seeding the whole factory supply. This custom is not only liable to produce a poor quality of milk, but it is more or less of a menace to all the patrons of a factory, inasmuch as the opportunity always obtains that disease-producing organisms may thus be introduced into the supply. Not infrequently is tuberculosis thus spread through the medium of factory by-products.

Fig. 8.—Whey Disposal.
Whey barrels at a Wisconsin Swiss cheese factory. Each patron's share is placed in a barrel which is so situated that it is impossible to empty it completely; thus it is not cleaned during the season.

The manufacture of Swiss cheese presents a striking example of the disregard which factory operators show toward the employment of bacteriological principles. In these factories, the custom is widely practiced of apportioning the patrons' allotment of whey into individual barrels which are supposed to be emptied each day. As these barrels are, however, rarely ever cleaned from the beginning to the end of the season, they become very foul, and the whey placed in them from day to day highly polluted. It is this material which is taken back to the farms in the same set of cans that is used for the fresh milk. When one recalls that the very best type of milk is essential for the making of a prime quality of Swiss cheese, and that to secure such, the maker insists that the patron bring the product to the factory twice daily, the before mentioned practice appears somewhat inconsistent.

Treatment of factory by-products. To overcome the danger of infecting milk from factory by-products with either undesirable fermentative organisms, or disease-producing bacteria, the most feasible process is to destroy these organisms by the application of heat. In Denmark, some portions of Germany, and in some of the states in this country, laws exist which require the heating of all skim milk before it is returned to the farm. This is done by the direct use of exhaust steam, or running the product through heaters.