Slimy or ropy fermentation of milk. A slimy or ropy condition of milk is frequently noted on the farm and in the dairy. Several causes for this abnormal condition exist. Sometimes the milk may be slimy when milked from the cow. This occurs most frequently in the case of inflammation of the udder which may or may not be due to bacteria. The direct cause of the abnormal condition in milk is the presence of fibrin and white corpuscles from the blood which form masses of slimy material; in such cases the trouble does not increase in intensity with age, nor can it be propogated by transference to another sample of fresh milk.

Fig. 22.—Slimy Milk.
It does not mix with water when poured into it.

Another type of slimy milk is produced by the growth of certain types of bacteria which enter the milk after it is drawn from the udder. These may come from various sources. The bacteria concerned belong to two groups: (1) those that grow best in the air and do not form acid; (2) those that grow in the absence of air, throughout the entire mass of milk and which form acid. The slimy condition is noted in the milk only after the milk has been stored for some time; it usually increases with the age of the milk and can be produced in a second sample by transferring a little of the slimy milk to it.

The fermentation produced by the aerobic bacteria is most often met in bottled milk and cream during the warmer times of the year. On account of their relation to oxygen, the growth is confined to the surface of the milk and only the upper layer becomes slimy; thus when the cream is removed, the abnormal condition is noted. The sliminess is due to the mass of bacterial growth rather than to the production of any specific substance in the milk. This trouble may be of considerable economic importance to the dealer, as such abnormal milk is objectionable for ordinary use, but as far as is known, it is incapable of affecting the health of the consumer.

In numerous outbreaks of this trouble the source of contamination has been traced to infection from well water or a stream, as the organisms causing the trouble are found naturally in water. Keeping the milk in a tank in the pump house sometimes permits of troubles of this sort, the water used for cooling giving opportunity for contamination. Cattle wading in a stream sometimes pollute their udders and so indirectly infect the milk. Such outbreaks rarely persist for any considerable length of time as the common acid organisms soon regain the ascendency.

Creameries and cheese factories are sometimes troubled with sliminess in starters. This seems to be due to some change which the ordinary lactic acid bacteria undergo on long propagation rather than to contamination of the starter. There are, however, types of acid-producing bacteria that are able to form specific substances in milk that are slimy in character. Two of these forms of slimy milk are of economic importance. The slimy whey (lange Wei) of Holland is added to milk in the manufacture of Edam cheese, apparently serving the same purpose as the addition of the pure culture starter in cheddar cheese making. In Norway, a sour, slimy milk (taettemjolk) is used as food. It is produced by the addition of some previously fermented milk. This beverage is also used in some of the Norwegian settlements of Wisconsin, the original seed having been brought from Norway, and the bacteria maintained by constant propagation from one sample of milk to another. The milk has the odor and taste of butter milk, but is not especially appetizing in appearance to any one not accustomed to it; it is, however, as harmless to health as is any other form of sour milk. It is not known that any of these forms of slimy milk are distinctly harmful to the quality of butter or cheese.

Alcoholic fermentation of milk. The bacteria as a class are incapable of producing alcohol in appreciable amounts. The alcoholic beverages, beer, wine, and cider, are produced by the growth of yeast, in such sugar containing liquids as fruit juices, extracts of grains, etc. The common types of yeasts are incapable of acting on milk sugar, but they can ferment glucose, maltose, and cane sugar, forming equal amounts of alcohol and carbonic acid gas, which causes the effervescence of fermented and carbonated drinks. There are, however, some types of yeasts found in milk and its products that are able to ferment milk sugar.

All yeasts grow best in an acid medium, hence those fermenting milk sugar find suitable conditions for growth in sour milk or whey. They may at times become of economic importance in the cheese industry, because of the contamination of the milk with large numbers of them. The arrangement of the whey vat is often such that it cannot be completely emptied and cleaned; the sour whey thus presents favorable conditions for the growth of the lactose-fermenting yeasts. The return of the whey to the farm in the milk can that is often imperfectly cleaned may serve to contaminate the milk with the yeast. In the making of Swiss cheese the whey is often so handled as to favor especially the growth of such yeasts, and since this type of cheese is prepared from sweet milk, the competition between the yeast and the acid-forming bacteria is not so sharp as in the making of cheddar cheese. The writers have found several instances where considerable loss was occasioned in the Swiss cheese industry through the development of gassy cheese due to this type of fermentation.

The yeasty or alcoholic fermentation may also be of importance in butter making. In many sections of the country the milk is separated on the farm and the cream is forwarded to the creamery at more or less infrequent intervals. It becomes sour and if it has become contaminated with yeasts, they will find favorable conditions for growth in the acid medium. A large amount of carbon dioxide gas is produced. Cans of gathered cream often foam to such an extent as to run over, and in some cases actual explosions have occurred on account of the great pressure caused by the gas.