Teaching such as this gave a new impetus to the study of organic remains, and Palæontology, as a science, began with Cuvier.


CHAPTER I.

HOW EXTINCT MONSTERS ARE PRESERVED.

“Geology, beyond almost every other science, offers fields of research adapted to all capacities and to every condition and circumstance of life in which we may be placed. For while some of its phenomena require the highest intellectual powers, and the greatest attainments in abstract science for their successful investigation, many of its problems may be solved by the most ordinary intellect, and facts replete with the deepest interest may be gleaned by the most casual observer.”—Mantell.

Let us suppose we are visiting a geological museum for the first time, passing along from one department to another with ever-increasing wonder—now admiring the beautiful polished marbles from Devonshire, with their delicate corals, or the wonderful fishes from the Old Red Sandstone, with their plates of enamel; now the delicate shells and ammonites from the Lias or Oolites, with their pearly lustre still preserved; now the white fresh-looking shells from the Isle of Wight; now the ponderous bones and big teeth of ancient monsters from the Wealden beds of Sussex. The question might naturally occur, “How were all these creatures preserved from destruction and decay, and sealed up so securely that it is difficult to believe they are as old as the geologists tell us they are?” It will be worth our while to consider this before we pass on to describe the creatures themselves.

Now, in the first place, “fossils” are not always “petrifactions,” as some people seem to think; that is to say, they are not all turned into stone. This is true in many cases, no doubt, yet one frequently comes across the remains of plants and animals that have undergone very little change, and have, as it were, been simply sealed up. The state of a fossil depends on several circumstances, such as the soil, mud, or other medium in which it may happen to be preserved. Again, the newest, or most recent, fossils are generally the least altered. We have fossils of all ages, and in all states of preservation. As examples of fossils very little altered, we may take the case of the wonderful collection of bones discovered by Professor Boyd Dawkins in caves in various parts of Great Britain. The results of many years of research are given in his most interesting book on Cave-Hunting. This enthusiastic explorer and geologist has discovered the remains of a great many animals, some of which are quite extinct, while others are still living in this country. These remains belong to a late period, when lions, tigers, cave-bears, wolves, hyænas, and reindeer inhabited our country. In some cases the caves were the dens of hyænas, who brought their prey into caverns in our limestone rocks, to devour them at their leisure; for the marks of their teeth may yet be seen on the bones. In other cases the bones seem to have been washed into the caves by old streams that have ceased to run; but in all cases they are fairly fresh, though often stained by iron-rust brought in by water that has dissolved iron out of various rocks—for iron is a substance met with almost everywhere in nature. Sometimes they are buried up in a layer of soil, or “cave-earth,” and at other times in a layer of stalagmite—a deposit of carbonate of lime gradually formed on the floors of caves by the evaporation of water charged with carbonate of lime.

Air and water are great destroyers of animal and vegetable substances from which life has departed. The autumn leaves that fall by the wayside soon undergo change, and become at last separated or resolved into their original elements. In the same way when any wild animal, such as a bird or rabbit, dies in an exposed place, its flesh decays under the influence of rain and wind, so that before long nothing but dry bones is left. Hamlet’s wish that this “too too solid flesh would melt” is soon realised after death; and that active chemical element in the air known as oxygen, in breathing which we live, has a tenfold power over dead matter, slowly causing chemical actions somewhat similar to those that take place in a burning candle, whereby decaying flesh is converted into water-vapour and carbonic acid gas. Thus we see that oxygen not only supports life, but breaks up into simpler forms the unwholesome and dangerous products of decaying matter, thus keeping the atmosphere sweet and pure; but in time, even the dry bones of the bird or rabbit, though able for a longer period to resist the attacks of the atmosphere, crumble into dust, and serve to fertilise the soil that once supported them.

Now, if water and air be excluded, it is wonderful how long even the most perishable things may be preserved from this otherwise universal decay. In the Edinburgh museum of antiquities may be seen an old wooden cask of butter that has lain for centuries in peat—which substance has a curiously preservative power; and human bodies have been dug out of Irish peat with the flesh well preserved, which, from the nature of the costume worn by the person, we can tell to be very ancient. Meat packed in tins, so as to be entirely excluded from the air, may be kept a very long time, and will be found to be quite fresh and fit for use.