Fig. 7.—Mandibles of Fish-lizards. A, Peloneustes philarchus (Seeley); from the Oxford Clay. B, Thaumatosaurus indicus (Lydekker); Upper Jurassic of India. C, Plesiosaurus aolichodirus (Conybeare); from the Lower Lias, Lyme Regis.

The visitor to the geological collection at South Kensington will find a splendid series of the fossilised remains of long-necked sea-lizards. They were mostly obtained from the Lias formation of Street in Somersetshire, Lyme-Regis in Dorset, and Whitby in Yorkshire. Those from the Lias are mostly small, about eight to ten feet in length. But in the rocks of the Cretaceous period, which was later, are found larger specimens. There is a cast of a very fine specimen from the Upper Lias on the wall of the east corridor (No. 3 on Plan) of the geological galleries at South Kensington, which is twenty-two feet long. But some of the Cretaceous forms, both in Europe and America, attained a length of forty feet, and had vertebræ six inches in diameter. The bodies of the vertebræ, or “cup-bones,” are either flat or slightly concave, showing that the backbone as a whole was less flexible than in the fish-lizards.

Fig. 8.—Plesiosaurus macrocephalus.

It may be mentioned here that Mr. Smith Woodward, of the Natural History Museum, recently showed the writer a fossil Plesiosaur that is being set up in the formatore’s shop, in the same manner that a recent skeleton might be. In this, and many other ways, the guardians of the national treasure-house are endeavouring to make the collection intelligible and interesting to the general public. Specimens of extinct animals thus set up, give one a much better idea than when the bones are all lying huddled together on a slab of rock. But it is not always possible to get the bones entirely out of their rocky bed, or matrix. Great credit is due to Mr. Alfred N. Leeds, of Eyebury, who has disinterred the separate bones of many distinct skeletons of Plesiosaurs from Oxford Clay strata near Peterborough.

It will be remembered that the long and powerful tail of the fish-lizard was its principal organ of propulsion through the water; and that, consequently, the paddles only played a secondary part. They were small, but amply large enough for the work they had to perform. But our long-necked sea-lizards possessed very short tails. What, then, was the consequence? Obviously that the paddles had all the more work to do. They were the chief swimming organs. The vertebræ of this short tail show that it probably was highly flexible, and could move rapidly from side to side; but, for all that, its use as a propeller would not be of much importance. We see now why the paddles are so long and powerful, like two pairs of great oars, one pair on each side of the body. In a fossil skeleton you will notice the flattened shape of the arm-bone (or humerus), and of the thigh-bone (or femur). This gave breadth to the paddles, and made them more efficient as swimming organs. They give no indication of having carried even such imperfect claws as those of turtles and seals, and therefore we may conclude that the Plesiosaur was far more at home in the water than on land, and it seems probable that progression on land was impossible.

The tail was probably useful as a rudder, to steer the animal when swimming on the surface, and to elevate or depress it in ascending and descending through the water. Like the fish-lizard, this creature was an air-breather, and therefore was obliged occasionally to visit the surface for fresh supplies of air. But probably it possessed the power of compressing air within its lungs, so that the frequency of its visits to the surface would not be very great.