It is quite clear, then, that we cannot place the Dinoceras in any order of living mammals. It is what palæontologists call a “generalised type;” that is to say, it presents certain characters seen in several groups of living quadrupeds, and not any of those elaborated or highly developed parts which we see in such animals to-day. Thus the proboscis of the elephant is a greatly elongated nose; in other words, the elephant is highly “specialised” in that direction, whereas our Dinoceras had no proboscis, or only a very slight one.
Fig. 43.—Skull of Dinoceras mirabile. (After Marsh.)
Again, the six remarkable bony protuberances of the skull served to some extent as horns, and probably were covered with thick bosses of skin, and did not support true horns like those of our modern oxen and other ruminants. Speaking of these protuberances, Professor Marsh says, “None of the covering of these elevations, or horn-cores, has, of course, been preserved; yet a fortunate discovery may perhaps reveal their nature by the form of a natural cast, as the eye-ball of the Oreodon is sometimes thus clearly indicated in the fine Miocene matrix which envelops these animals.” It looks rather as if we have here an early stage in the evolution of horns, and it may be that in the course of subsequent ages such prominences as those developed into true “horn cores,” such as sheep or goats have, while the thick bosses of skin that covered them slowly developed into the true horns that are attached to these cores. If this is so, then we have here another instance of a “generalised” structure. Again, the limbs with their five toes tell us at once that the creature’s place in Nature is outside of those two great groups of modern ungulates, or hoofed quadrupeds, the odd-toed and the even-toed, represented on the one hand by the horse, rhinoceros, and tapir, on the other by the pig, camel, deer, ox, and many other forms. Probably the two groups had not at this early period branched off from the primitive ungulate stock with five toes in each foot, of which the elephant is a living descendant, and from which also the Dinoceras must have come.
Fig. 44.—Cast of brain-cavity of Dinoceras mirabile. (After Marsh.)
The limbs were strong and massive, but the brain was remarkably small, so that our Dinoceras cannot be credited with any high degree of intelligence: and here again we see an absence of “specialisation” compared with the sagacious elephant. Professor Marsh has taken casts of its brain-cavity (see [Fig. 44]). These casts show that the brain was smaller (in proportion to the size of the animal) than in any other mammal, whether living or extinct—and even less than in some reptiles! In fact, it was a decidedly reptilian kind of brain. Perhaps it may seem hardly credible, but so small was the brain of Dinoceras mirabile, that it could have been pulled through the apertures (neural canals) of all the neck vertebræ! In certain marsupials of the present day we find an approach to this kind of brain. It seems to be an established fact, according to Professor Marsh, that all the Eocene or earlier Tertiary mammals had small brains. His researches among fossil mammals have led him to the important conclusion that, as time went on, the brains of mammals grew larger; and thus he has been able to establish his law of brain-growth during the Tertiary period, a law which appears to be plainly recorded in the fossil skulls of succeeding races of ancient mammals. The importance of a discovery such as this cannot fail to strike the imagination of even the most unlearned in geology as being singularly suggestive and instructive. It is not difficult to picture these dull, heavy, slow-moving creatures haunting the forests and palm jungles around the margin of the great Eocene lake, into the waters of which their carcases from time to time found their way—perhaps swept down by floods. No footprints have been discovered as yet.
The Dinocerata were very abundant for a long time during the middle of the Eocene period. The position of their remains suggests that they lived together in herds, as cattle do now, and they probably found an abundance of food in the shape of succulent vegetation round the great lake. Geological evidence points to their sudden extinction before the close of the Eocene period; but it is difficult to understand this. Professor Marsh thinks that from their sluggish nature they were incapable of adapting themselves with sufficient rapidity and readiness to new conditions, such as may have been brought about by geographical changes. It must be admitted, however, that the geological record in this region does not give evidence of any sudden change. Possibly they may only have migrated to some other region, where their remains have not yet been discovered, or where, for various reasons, their skeletons were not preserved. In this Eocene lake, where sediments went on being quietly deposited for a long time, we have the most favourable conditions for the preservation of the different forms of life that flourished round its borders.