Fig. 27.

It now remains to see which toning bath is to be used. If No. 1 or 3, the whole of the free silver should as far as possible be washed away, which may entail three or four changes of water; the last two washings it will hardly repay to place in the tub; the second washing should certainly be added to it. If No. 2 toning bath be used, a little free silver should remain in the print; in fact, the washing should be confined to two changes of water.

When toning operations are commenced, the toning solution is poured off from any sediment that may be in the bottle containing it into a dish a couple of inches wider each way than the largest print which has to be toned. If big prints have to be toned, it is inadvisable to place more than a couple in the dish at the same time, since there is a certain awkwardness in judging of the amount of tone given to a print which is (say) between two or three. The prints should be placed face up in the solution, and great care should be taken that liquid separates each print from the next one to it, otherwise there will be patches of unequal toning. The dish containing the prints in the solution should be gently rocked to secure a proper mixture of the solution which may have been robbed of its gold in those strata next surface of the prints. The rocking is also advisable to cause any adhesion between two deep-toning prints impossible. If the prints be of small size, a dozen or more may be toned at one operation. Each print should be frequently brought to the surface of the liquid, and examined in order to see how the toning action is progressing. When one print is judged sufficiently toned, it is removed to a dish containing pure water, and another untoned print placed in the dish in its stead. This operation is continued till all the prints are toned. We have heard that it has been suggested to place the prints in water containing a little acetic acid or common salt, in order to stop the toning action continuing from the solution which may be held in the paper. The former is most undesirable, acetic acid, as we shall see presently, decomposing the fixing bath.

As to the addition of common salt, we can scarcely give a favourable opinion regarding it. The addition of a chloride does, in truth, alter the colour of the deposited gold (see ante), and it may be this that gives rise to the opinion that it corrects toning action. Of one thing we have little doubt, however, and that is, that the addition of any large amount of common salt will tend to turn the albumenate of silver into chloride, which in fixing will materially weaken the print. When giving the formula of the toning baths, we have indicated the depth to which toning should take place. One great point to attend to is, that a print should not be a slatey colour when fixed, and that can only be avoided by stopping the toning action when the print arrives at a blue-purple stage.

The toning bath, when used, should be replaced in the bottle, and we recommend that it be kept in a dark place, otherwise any chloride of silver which finds its way into the solution will darken and be a nucleus for the precipitation of gold from the solution. The energy of the toning bath would, in consequence, be wholly gone. It will be found that in very cold solutions formed in winter the toning action is much slower than in summer, and we need scarcely point out that this due to the fact that cold invariably retards chemical action. This retardation is not advantageous, and it will be found positively hurtful as to the colour of the precipitated gold. We therefore recommend that the toning solution and the dish in which it is to be poured should be warmed before the fire, the former to a temperature of about 70°F., and the latter a little higher. By this means the toning action will take place as rapidly as in warm weather, and the same tones be produced. It must be remembered we are writing for all; not for those alone who have an elaborate arrangement for keeping their operating rooms at a good temperature in all weathers, but also for those who cannot afford the luxury. It is for this reason that we have given the above directions.


[CHAPTER XVI.]
FIXING THE PRINT.

Sir J. Herschel was the first to point out that hyposulphite of soda would dissolve chloride of silver, and subsequently it has been found that it dissolves almost every organic salt of silver. In our early chapters we gave some examples of this. When we add hyposulphite to a salt of silver, such as the chloride, we get one of two reactions, the formation of a nearly insoluble double hyposulphite of soda and silver, or a readily soluble one.

Silver ChlorideandSodium HyposulphiteformInsoluble Double Hyposulphite of Silver and SodiumandSodium and Chloride.
AgCl+Na2S2O3=AgNaS2O3+NaCl
And Silver ChlorideandSodium HyposulphiteformSoluble Double Hyposulphite of Silver and SodiumandSodium and Chloride.
2AgCl+3Na2S2O3=Ag2Na43(S2O3)+2NaCl