Good ventilation along the ridge of the roof should be provided, wherever there is any steam or hot liquor used; or the condensed moisture soon leads to decay.
As regards the general plan of the buildings, much depends on local circumstances; but as far as possible, they must be so arranged that the hides and leather work straight forward from one department to another with as little wheeling or carrying as possible; that the buildings where power is used be near to the engine, so as to avoid long transmissions, which are very wasteful of power; and that the different buildings be so isolated as to diminish the risk of the whole being destroyed in case of fire.
As regards the first of these conditions, if the various soaks, limes, bates, and handlers are well arranged, it is hardly necessary to do more than draw the goods from one pit into the next throughout the whole of the process. To, and from the layers, the goods must generally be carried or wheeled. In the sheds, if it be a sole-leather tannery, the butts should first come into turrets or open sheds for the rough drying; then into a room sheltered from draughts to temper for striking. The striking machines or beams should be in an adjoining room, or immediately below; then a small shed-space for drying before rolling; next the roller room; and then the warm stove for drying off. If two of these can be provided to be used alternately, it will allow the goods to be aired off without taking down, and they may then be immediately handed or lowered into the warehouse, without fear of over-drying, which is sometimes difficult to avoid where leather must be taken direct out of the hot drying-room.
To fulfil the second condition named, the engine should be at the centre of the main range of buildings, with perhaps the grinding machinery on one side, and the leather-finishing on the other; but this would be rather contrary to the third requirement. A very good plan would be to have the engine-house in the centre as suggested, but separated from the buildings on each side by brick gables; and with the boiler-house behind it, and under a separate roof, say of corrugated iron. Figs. [61], [62], from Eitner's book on American Tanning, show the arrangement of a sole-leather tannery in the United States. If it be impossible to have the engine near its work, it is in most cases better to employ a separate high-pressure engine, which may be within a glass partition, and will work all day with scarcely any attention. The loss of power in carrying steam for moderate distances through sufficiently large and well-clothed pipes is much smaller than that of long lines of shafting. The writer has known cases where fully half the indicated power of the engine was consumed in friction of the engine, shafting, and belts. High-pressure engines are as a rule to be preferred to condensing for tannery use, since the waste steam can generally be employed for heating, and both the first cost and that of maintenance are smaller. Where much fuel is used, it is quite worth while to have the cylinders indicated occasionally, both running light, and driving the machinery; much information is gained in this way as to the power spent on the various machines, and very frequently large economy is effected by proper adjustment of the valves. To work economically, an engine should be of ample power for all it has to do; and adjusted to its work, not by lowering the pressure of steam, or by checking it at the throttle-valve, but by setting the slide-valves to cut off as early in the stroke as may be. As to how early this is possible, an indicator-diagram will at once give information. In arranging shafting, moderate speeds, say 100-150 rev. per min., should be chosen for main lines, and when higher speeds are necessary, they should be got up by light and well-balanced counter-shafts, with wrought-iron pulleys. In calculating speeds, it must be remembered that they vary inversely as the size of the pulleys. Thus a 3 ft. pulley running at 100 rev., will drive a 2 ft. one at 150 rev., and a 12 in. one at 300. Of course the higher its speed, the more power any shaft will transmit, but increased friction and wear and tear soon limit this advantage. The velocity of a belt in feet per min. is obtained by multiplying the number of revolutions per minute by the girth of the pulley in feet or by its diameter multiplied by 31/7, or more accurately, 3·1416.
Fig. 61.
Fig. 62.