Æneas.[54]
cir. 350 B.C.
Vegetius.[55]
cir. A.D. 350.
Liber Ignium.[56]
1200-1225.
Kyeser.[57]
1405
Wild Fire.[58]
1560
Carcass Composition.[59]
1903.
SulphurSulphurSulphurSulphurSulphurSulphur
PitchBitumenPitch...PitchTallow
Pine-wood[60]RosinSarcocolla[61]...CharcoalRosin
IncenseNaphthaPetroleumPetroleumTurpentineTurpentine
Tow...Sal Coctus[62]Salfanium?Bay SaltCrude Antimony
......Oil of Gemma.........
......Tartarum[63]SaltpetreSaltpetreSaltpetre

In such ways were incendiaries employed by the Greeks for nearly eleven centuries after the siege of Platæa. During this long period the composition was of course improved, and the mixture of the seventh century A.D. burned more fiercely, and was harder to put out than that of the fourth century B.C.; but nevertheless the two mixtures were of the same species. At length, in the decade 670-80, a new species was devised. For the sake of clearness, the old incendiary mixtures will henceforward be called Greek fire; the new one “sea-fire.”

We are told by Theophanes in his “Chronography,” written 811-815, that in the year 673 an architect called Kallinikos[64] fled from Heliopolis in Syria to the Romans (i.e. Constantinople), and eventually compounded a “sea-fire” which enabled them to burn large numbers of the Moslem vessels engaged in the Seven Years’ War,[65] 671-677. This incendiary was again employed with success against the Moslems during their second attack against Constantinople, 717, and at the decisive naval victory over the Russians under Igor in 941. The evidence of Theophanes about Kallinikos is corroborated almost verbally by the Emperor Constantine VII., Porphyrogenitus, in Chap. xlviii. of his “Administration of the Empire”: “Be it known that under the reign of Constantine Pogonatus (668-685) one Kallinikos, who fled from Heliopolis to the Romans, prepared a ‘wet-fire’ to be discharged from siphons, by means of which the Romans burned the fleet of the Saracens at Cyzicus and gained the victory.”[66] It is true that when writing to his son (in Chap. xiii. of the same work) the Emperor gives (or tells his son to give) a different version of the invention of sea-fire: “If any persons venture to inquire of you how this fire is prepared, withstand them and dismiss them with some such answer as this—that the secret was revealed by an angel to the first Emperor Constantine” (A.D. 323-337).[67] But this passage only proves that the Emperor was mendacious and his people superstitious. There can be little doubt that this great invention was made by a Greek for the Greeks in the decade 670-680; but what was the nature of the mixture? All we know for certain about it is that it was a State secret, was intended for sea service, burned with much noise and vapour, and was projected from siphons. In other words, the mixture fulfilled the following conditions:—

(1) Its composition could be kept secret.

(2) It had some close connection with the sea, or water.

(3) It burned with much noise and smoke.

(4) It had some close connection with siphons, or tubes.

The fact that the sea-fire was made a State secret proves that it did not belong to the same family as the Greek fire of Æneas and Vegetius which, in one form or another, had been known all over the East from time immemorial. It was a new mixture—i.e. either a mixture containing some substance not hitherto known, or a mixture of known substances not hitherto combined together for warlike purposes. Many hold that an unknown substance was employed, and, further, that it was no other than saltpetre. We might, of course, fall back on the conclusion established in Chap. ii., and reply that saltpetre was not discovered until the thirteenth century and could not have been used as an ingredient of an incendiary in the seventh century. But the conclusion drawn in Chap. ii. was not a certain one: it was there characterised as highly probable. Saltpetre might possibly have been employed, and a belief which is shared in by some good writers deserves respectful consideration. We have, therefore, to investigate how far a saltpetre mixture would satisfy the above four conditions.