Liber Ignium.[80]
cir. 1300.
Liber Ignium.[81]
cir. 1350.
De Mirabilibus[82]
cir. 1350.
Kyeser.[83]
1405.
Hartlieb.[84]
cir. 1425.
Sulphur.Sulphur.Sulphur.Sulphur.Sulphur(Oil of).
Quicklime.Quicklime.Quicklime.Quicklime.Quicklime.
Oil.Turpentine.Naphtha.Petroleum.Mastic.
Gum Arabic....Wax.Wax.Gum Arabic.
......Oil of Balm.......


N.B.—None of these mixtures professes to be the official Greek sea-fire, the exact composition of which is unknown; but the “De Mirabilibus” mixture is probably a close approximation to it. Although called sea-fires here, they were not so called by their western authors, who were ignorant of the use and even of the name of sea-fire. The first four recipes are described as mixtures which will ignite “when rain falls upon them.” Hartlieb alone foresaw that such mixtures would ignite “if thrown upon water.”

Such a mixture would have completely fulfilled the four conditions already mentioned. First, the secret of its composition was easy to keep, since it lay in the choice and proportions of known ingredients; not in the use of one special and unknown substance (such as saltpetre), smuggled privily into the Arsenal[85] with a mystery which was certain to excite the curiosity of a people who “spent their time in nothing else, but either to tell or to hear some new thing.” Secondly, it was literally a “sea-fire” or “wet-fire,”—a fire which was ignited by water and which burned on its surface. Thirdly, its combustion gave rise to a considerable volume of vapour and a series of small explosions in the air. Fourthly, from the mode of its combustion it was unsafe to handle after ignition, and it was necessarily discharged from siphons. This simple explanation of the sea-fire[86] sweeps away the insurmountable difficulties raised by the saltpetre theory. We have no longer to believe in the patriotic silence of Byzantine officials, workmen and sailors, maintained for five hundred years; we have no longer to admit reluctantly that saltpetre was known in Greece, where it occurs in comparatively scanty quantity, five hundred years before it was known in the great natural storehouse of this salt, Asia; we have no longer to suspect the whole body of Greek writers on alchemy and pharmacy, from the seventh to the thirteenth century, of having entered into a vast conspiracy of silence to hide their knowledge of saltpetre from the barbarians; we are no longer left wondering whence the Greeks got their saltpetre, and why they gave the name of “sea-fire” to a mixture in no way connected with the sea; and we are no longer perplexed by the fact that the earliest recipes for Greek fire contain no saltpetre.[87]

It remains to inquire how the sea-fire was expelled from the siphons.

There were two kinds of siphons, large siphons and hand-siphons.

Of the hand-siphons there were several patterns. Some seem to have been thrown by hand, like squibs;[88] from others, mentioned by Cameniata, the charge was projected by air[89]—presumably by a bellows or some such contrivance; while in a third kind, described by the Princess Anna, a pellet was blown by the breath through a flame placed before the front end of the tube.[90] The two latter siphons were of the same species, and as Anna’s was charged with Greek fire[91] we may suppose Cameniata’s took a similar charge.

The large sea-fire siphon was fixed in the bow of the ship and served by the two foremost rowers, one of whom laid the siphon and was called the siphonator, while the other, we may suppose, loaded it. The siphon was mounted on a swivel, as may be gathered from the account given by the Princess Anna of the naval battle fought near the island of Rhodes in 1103 by the Greeks and the Pisans. The latter were terrified, she says, by an apparatus which directed on them fire of an extraordinary nature. “Ordinary flame rises upwards, but this flame shot downwards and sideways as well, at the will of the gunner.”[92] Unless the siphon was mounted on a swivel, the phrase which I have translated by “at the will of the gunner” (ἐφ’ ἃ βούλεται ὁ πέμπων) would be meaningless.

In his Recherche sur le Feu Grégeois, p. 23, M. Chrétien-Lalanne maintains that the incendiary was expelled from the siphon by means of a spring. This theory is inadmissible, for helical springs are not heard of until long after the time in question. Further, the ancients possessed no means of condensing air to the degree necessary for the projection of a heavy body over even the short ranges of the Dark Ages, and steam power had hardly been recognised at all.[93] Therefore, it has been urged, the incendiary must have been expelled from the siphon by means of an explosive saltpetre mixture, this being the only way of effecting the object that remained at the disposal of the ancients. As will be seen presently, there remained a simple and efficacious method, involving very little expense and no danger whatever; a fact which in itself would be sufficient to meet the above argument in favour of saltpetre, even were it unsupported by the evidence already brought forward in Chap. ii. to show that saltpetre had not been yet discovered at the time in question, and the evidence adduced in the present chapter to prove that in fact it was not used. Further, the supposition that an explosive was employed is excluded by the construction of the siphon, which was made of wood. Such is the only reasonable explanation that can be given of the Emperor Leo’s order that the siphons should be “cased with bronze.”[94] Had they been of metal, a casing of bronze would have been a useless complication; but, being of wood, an internal casing of metal was absolutely necessary to protect them from the flame of the burning composition. Only one round probably could have been fired from a wooden tube by means of an explosive, and that round in most cases would have been more fatal to the siphon detachment than to the enemy.

Again, as the projectile was simply a lump of oleaginous matter, it would have been blown by an explosive cartridge into thousands of fragments, each of them so small as to be worthless for incendiary purposes; for the efficacy of an incendiary depends to a great extent on its containing a large quantity of matter.