Now the explanatory phrase, “qe l’em appelle gonne,” shows that gonne was but little known when the above recipe was written. We may therefore date it at 1350.

It will be observed that down to the word marbre, the recipe is a literal translation of a receipt for rocket composition given by Marcus Græcus.[417] Yet the two powders, although made of nominally the same ingredients in the same proportions, did not produce the same effects when fired; for gunpowder will not propel a rocket, and rocket composition will not project a cannon-ball. The difference in their effects was probably due to the researches of Roger Bacon, who had discovered the importance of using pure saltpetre and of thoroughly incorporating the ingredients. It is improbable that Arderne’s recipe represents the powder used in the cannon of his time. Its proportions are so entirely out of keeping with those of the French powder of 1338 (Table VIII.) and those of Whitehorne’s powder of 1560 (Table VII.), that we may regard it as no more than a laboratory receipt.

It needed but little experience to show how far short of perfection serpentine powder fell.

While the fouling of dry, well-incorporated powder is comparatively trifling, a damp or slow-burning powder, such as serpentine, leaves a much larger residue. The consequence was that, after a few rounds, it was exceedingly difficult to reload small arms, a considerable part of the loose, floury charge sticking to the fouling.[418] The remedy for this evil was the use of cartridges. Whitehorne mentions “bagges of linnen or paper” for the charges of cannon in 1560,[419] and in 1590 Sir John Smythe speaks not only of cartridges, but of composite cartridges for small arms—“cartages with which (musketeers) charge their peeces both with powder and ball at one time.”[420]

There are payments for talwood (faggots) “for drying powder” in the English store accounts 1372-74,[421] and in 1459 the Scotch Government were endeavouring to keep their powder dry by storing it in waxed canvas bags.[422] An official recommends the English Privy Council in 1589 to sell certain “bad powder” at Dorchester, adding, “the longer it is kept the worse yt wilbe.”[423] The Navy were of course, then and always, the chief sufferers from damp powder. Serpentine powder, Sir Henry Manwayring tells us in 1664, was never taken to sea (after big guns had become strong enough to stand corned powder) “both because it is of small force, and also for that it will, with the aire of the sea, quickly drie and lose its force.”[424] But corned powder was by no means proof against damp. In the action fought off Grenada in July 1779, Bishop Watson says “the English shot would not reach” the French. The powder, it was found, “had concreted into large lumps, in the middle of which the saltpetre was visible to the naked eye.”[425] Between the years 1790 and 1811, 189,000 whole barrels of powder, “which had formed into lumps from the damp of H.M.’s ships of war,” and had consequently been returned into store as useless, were rendered serviceable in the Government powder factory.[426]

Being merely a loose mechanical mixture of three substances with different specific gravities, serpentine powder had a tendency, when shaken in transport, to resolve itself into three strata, the heaviest substance (the sulphur) settling down to the bottom, and the lightest (the charcoal) remaining at the top. This meant, practically, that on coming into the enemy’s presence the ingredients had to be incorporated afresh. To save trouble, and to avoid the danger of a second mixing, it was for a long time customary to carry the ingredients separately,[427] or, at least, to carry the charcoal apart from the saltpetre and sulphur. There was another argument, however, in favour of this course. While serpentine powder, however tightly secured, gave out a large quantity of impalpable dust which might cause an explosion at any moment, no explosion was possible so long as the ingredients were kept asunder. But whatever was the reason for resorting to such an expedient, it is evident that the remedy was nearly as bad as the disease.

Serpentine powder had another drawback,—it required very careful ramming home. “Thrust the pouder home fair and softly,” says Whitehorne.[428] “The powder rammed in too hard and the wad also,” says Bourne in 1587, “it will be long before the peece goeth off.... The powder too loose ... will make the shotte to come short of the mark.... Put up the powder with the rammer head somewhat close, but beat it not too hard.”[429] By beating it too hard the interstices between the particles through which the flame permeated the charge were diminished in size, and if beaten sufficiently hard the mixture tended to become a solid which burned away without exploding. Finally, the combustion of serpentine, at the best, was so slow that a large volume of its gas escaped wastefully through the vent.

These evils were in some cases much lessened, and in others quite got rid of by the gradual introduction of corned powder, which is mentioned in 1429 in the Firebook of Conrad von Schongau,[430] and was in use for hand-guns in England long before 1560. Corned powder (1) deposited less fouling than serpentine; (2) it was less susceptible to damp, especially after the introduction of glazing;[431] (3) it did not resolve into strata in transport; (4) it gave out less dust; (5) it was much less affected by hard ramming; (6) owing to the larger interstices between the grains,[432] it burned so quickly that there was little or no waste of gas through the vent, and it was consequently so strong that 2 lbs. of corned did the same work as 3 lbs. of serpentine powder.[433] It was, in fact, too strong for cannon for a long period: Chemistry had outrun Metallurgy. “If serpentine pouder should be occupied (used) in handguns,” says Whitehorne, “it would scant be able to drive their pellets[434] a quoit’s cast from their mouths; and if handgunne (i.e. corned) pouder should be used in pieces of ordnance, without great discretion, it would quickly break or marre them.”[435] Here we have the cause which necessitated the general retention of serpentine powder for cannon until the first half (or middle) of the sixteenth century, after which it is heard of no more except for secondary purposes, such as priming, &c. We must not overlook the importance of Whitehorne’s remark. He was an educated man of sound, practical sense, who had been a student of Gray’s Inn, and whose experience was not confined to the English Artillery, for he had seen service in the Low Countries. What he says is a sufficient safeguard against inferring too much from Schongau’s mention of corned powder in 1429. It came slowly into use for hand-grenades and small arms in the fifteenth century; but no country then possessed cannon strong enough to stand its explosion, and it did not come into general use for another century.