INTRODUCTION

The transistor burst upon the electronic scene in the 1950s. Almost overnight the size of new models of radios, television sets, and a host of other electronic devices shrank like deflating balloons. Suddenly the hard-of-hearing could carry their sound amplifiers in their ears. Teenagers could listen to favorite music wherever they went. Everywhere we turned the transistor was making its mark. There was even a proposal before Congress to require that every home have a transistor radio in case of emergency.

The next development to fire the imagination of scientists and engineers was the laser—an instrument that produces an enormously intense pencil-thin beam of light. Most of us have heard so much about this invention it seems hard to believe that the first one was built only a few years ago. We were told that the laser was going to have an even greater effect on our lives than the transistor. It was going to replace everything from dentists’ drills to electric wires. The whole world, it seemed, eventually would be nothing but a gigantic collection of lasers that would do everything anyone wanted. Roads would be blazed through jungles at one sweep; our country would be safe once and for all from intercontinental ballistic missiles; cancer would be licked; computers would be small enough to carry in a purse; and so on and on.

Yet for the first couple of years the laser seemed able to do nothing but blaze holes in razor blades for TV commercials. Somehow the device never seemed to emerge from the laboratory, prompting one cynic to call it “an invention in search of an application”.

Many of the wild claims came from misunderstandings on the part of the press, others from exaggerations by a few manufacturers who wanted free publicity. But with even less exotic devices than lasers, the road from the laboratory to the marketplace may often be long and hard. Price, efficiency, reliability, convenience—these are all factors that must be considered. It soon became clear that with something as new as the laser, much improvement was necessary before it could be used in science and medicine, and even more before it could be used in industry.

It now seems, however, that the turning point has been reached. We have seen laser equipment put on the market for performing delicate surgery on the eye, spot-welding tiny electronic circuits ([Figure 1]), and controlling machine tools with amazing accuracy ([Figure 2]).

Figure 1 A commercial laser microwelder. A microscope is needed for accurate placement of beam energy.

The pace is quickening. At least a dozen manufacturers have announced that they are designing laser technology into their products. These are not laboratory experiments but practical products for measurement and testing, and for industrial, military, medical, and space uses. The Army, for example, has announced that it will purchase its first equipment for use in the field: a portable, highly accurate range finder for artillery observation.

Still, this hardly accounts for the $100,000,000 spent in one recent year on laser research and development by some 500 laboratories in the United States. The U. S. Government alone has spent about $25,000,000 on laser research in a single year. Dozens, and perhaps hundreds, of other applications are on the fire—simmering or boiling as the case may be. Some require particular technical innovations such as greater power or higher efficiency. Others are entirely new applications. One of the most exciting of these is holography (pronounced ho LOG ra phy).