The merozoites move in a manner similar to that of the sporozoites. The movements consist either of slow incurvations with subsequent straightenings, or annular contractions along the entire extent of the body. In addition, there are gliding movements similar to those of many gregarines, and brought about in a like manner by the secretion at the posterior extremity of a gelatinous substance that hardens rapidly.
The merozoites do not gain the open in the usual way, but are destined to infect still further the same host by actively penetrating into other epithelial cells of the affected organ. Here they continue their growth and may again and again undergo schizogony. In the Infusoria the repeated segmentations finally cease and are renewed only after a conjugation. This is likewise the case with the Coccidia, with the difference that in the latter the two conjugating individuals (gametes) are differently constituted one from the other, whereas in the Infusoria they are almost always similar.
When the schizogony ceases, the merozoites, that had penetrated the epithelial cells and become trophozoites there, consist of two kinds of differently constituted individuals. One kind possesses a clear cytoplasm (fig. 67, XII), the other an opaque, richly granular cytoplasm (fig. 67, XI), while both possess a vesicular nucleus with a karyosome. In order to continue their development, the more granular individuals must be fertilized, and are therefore termed either female gametes or, on account of their size, macrogametes. The male individuals (microgametes) necessary to conjugation, are formed in greater numbers from the less dense microgametocytes or male mother-cells (fig. 67, XIId). They are slender bodies consisting chiefly of nuclear substance, and in most species bear two flagella of unequal length directed backwards, the place of insertion of which varies according to the species (fig. 67, XIIe).
While the development of the microgametes is rapidly advancing a change occurs in the nucleus of the female parent forms or macrogametocytes. Parts of the karyosome are extruded (fig. 67, XIc), and the nucleus loses at the same time its vesicular form. One macrogamete results, after nuclear maturation, from one macrogametocyte. By this time the macrogametes are capable of conjugation, and the process takes place within the host, generally, however, outside the affected and degenerated host cells. The microgametes that have now become free from the very large residual body, crowd around the mature macrogametes, which often send out a small prominence (“cone of reception” or fertilization protuberance) for their reception (fig. 67, XIII). As soon as a microgamete comes in contact with this and penetrates into the cytoplasm of the macrogamete, the latter surrounds itself with a membrane which prevents the intrusion of other microgametes. The nucleus of the microgamete that has gained entry unites with the nucleus of the macrogamete, which latter is afterwards capable of forming the well-known spores. The parasite is now called an encysted zygote or oöcyst. The oöcysts of some other members of the Coccidiidea, e.g., Eimeria avium, can form their walls prior to fertilization. In such cases, a weak spot is left at one place in the cyst wall, forming a micropyle, that permits of the entry of the male, immediately after which the micropyle is closed.
The reduced nucleus of the macrogamete elongates on the entry of the microgamete, and becomes a fertilization spindle to which the male pronucleus (from the microgamete) becomes attached (fig. 67, XIV and XV). Thereupon the spindle divides into two daughter nuclei (fig. 67, XVI) which assume a round shape. The protoplasm at this stage may at once divide, or another segmentation of the daughter nuclei may first occur. In the former case the two halves divide again, so that finally four nucleated segments, the sporoblasts, are formed, whereas in the latter case the four sporoblasts appear simultaneously (fig. 67, XVII). In both cases a residual body of varying size is separated from the protoplasm of the oöcyst. As a rule the oöcysts have already been discharged from the body of the host, and in the manner described above, form the sporoblasts after a longer or shorter period of incubation.
The sporoblasts are originally naked, but each soon secretes a homogeneous membrane, the sporocyst, in which it becomes enveloped (fig. [67], XVIII). After the segmentation of the nucleus the contents divide into two sickle-shaped sporozoites, in addition to which there is generally also a residual body (fig. 67, XIX).
This terminates the development. The spores are intended for the infection of other hosts. If they reach the intestine of suitable hosts, either free or enclosed in the oöcyst wall, the action of the intestinal juices causes them to open and permits the escape of the sporozoites (fig. 67, XX). The latter move exactly like the merozoites and soon make their way into epithelial cells (fig. 67, I), where they become schizonts, and thus repeat the life cycle.
Although our knowledge of the development of the coccidia is but of recent date, yet it already extends to a large number of species, which exhibit various deviations from the cycle of development described above. For instance, in addition to differences in the gametocytes, the schizonts of Adelea and Cyclospora also show differentiation and give rise to macromerozoites and micromerozoites, whilst in Adelea and Klossia a precocious association of the gametocytes precedes the true copulation of the ripe gametes.
The classification of the Coccidiidea is based chiefly on the number of sporozoites found in each spore, and the number of sporocysts (spores) found in one oöcyst. Léger[173] recognises two great legions, the Eimeridea and the Adeleidea, the former comprising the greater number of genera, including the genus of most economic importance, Eimeria. It must be noted that, though a member of this genus may be frequently referred to as Coccidium, strictly it should be termed Eimeria, that name having priority. The name of the disease resulting from the action of such parasites is, however, established and remains as coccidiosis.
Certain of the more important of the Coccidiidea may now be considered.