An important work dealing with the modern applications of the mosquito-malaria theory in all parts of the Tropics was published by Sir Ronald Ross in 1911. It is entitled “The Prevention of Malaria” (John Murray, London, 21s.).

DEVELOPMENT OF THE MALARIAL PARASITES OF MAN.

The commencement of the developmental cycle and of the infection of man, is the sporozoites (fig. [80], 1) which are passed into the blood of a person by the bite of an infected mosquito. Prior to this the parasites collect in the excretory ducts of the salivary glands (fig. 80, 27) of the Anopheles. The sporozoites are elongate and spindle-shaped, 10 µ to 20 µ long and 1 µ to 2 µ broad, with an oval nucleus situated in the middle. They are able to glide, perform peristaltic contractions, or curve laterally. Schaudinn has studied the penetration of the red blood corpuscles (fig. 80, 2) by the sporozoites in the case of the living tertian parasite. The process takes forty to sixty minutes in drawn blood. After its entrance the parasite, which is now called a trophozoite, contracts, and becomes an active amœbula (fig. 80, 3). It develops a food vacuole and grows at the expense of the invaded blood corpuscle (fig. 80, 4), which is shown by the appearance of pigment granules (transformed hæmoglobin) in it. When the maximum size is attained, multiplication by schizogony (fig. 80, 5-7) begins with a division of the nucleus, which is followed by further divisions of the daughter nuclei, the number of which varies up to 16 or even 32, depending on the species of the parasite. Then the cytoplasm divides into as many portions as there are nuclei, the result being a structure suggestive of the spokes of a wheel or of a daisy, the centre of the resulting rosette being occupied by dark pigment. Finally, the parts separate from one another, leaving behind a residual body containing the pigment, and the daughter forms issue into the blood plasma as merozoites (fig. 80, 7). They are actively amœboid (fig. 80, 8) and soon begin to enter other blood corpuscles of their host, for the entry into which thirty to sixty minutes are necessary, according to Schaudinn’s observations.[197]

Here they behave like sporozoites which previously entered and again produce merozoites. This process is repeated until the number of parasites is so large that, at the next migration of the merozoites, the body of the person infected reacts with an attack of fever,[198] which is repeated with the occurrence of the next or following generations.

Fig. 80.—Life-cycle of the tertian parasite (Plasmodium vivax). Figs. 1 to 17, × 1,200; figs. 18 to 27, × 600. (After Lühe, based on figures by Schaudinn and Grassi.) 1, sporozoite; 2, entrance of the sporozoite into a red blood corpuscle; 3, 4, growth of the parasite, now sometimes called a trophozoite; 5, 6, nuclear division in schizont; 7, free merozoites; 8, the merozoites which have developed making their way into blood corpuscles, (arrow pointing to the left) and increase by schizogony (3–7); after some duration of disease the sexual individuals appear; 9a-12a, macrogametocytes; 9b-12b, microgametocytes, both still in the blood-vessels of man. If macrogametocytes (12a) do not get into the intestine of Anopheles they may perhaps increase parthenogenetically according to Schaudinn (12a; 13c-17c). The merozoites which have arisen (17c) become schizonts 3–7. The phases shown underneath the dotted line (13–17) proceed in the stomach of Anopheles. 13b and 14b, formation of microgametes; 13a and 14a, maturation of the macrogametes; 15b, microgamete; 16, fertilization; 17, oökinete; 18, oökinete in the walls of the stomach; 19, penetration of the epithelium of the stomach; 20–25, stages of sporogony on the outer surface of the intestinal wall; 26, migration of the sporozoites to the salivary gland; 27, salivary gland with sporozoites.

The growth and schizogony last different times, according to the species of the parasite, about forty-eight hours in the case of the parasite of febris tertiana or tropica, and seventy-two hours for the quartan parasite. The various intermittent forms produced by them depend on this specific difference in the malarial parasites.

The schizogony can, however, only be repeated a certain number of times, supposing that the disease has not been checked prematurely by the administration of quinine, which is able to kill the parasites. It appears that after a number of attacks of fever the conditions of existence in man are unfavourable for the malarial parasites, and this brings about the production of other forms which have long been known, but also long misunderstood (spheres, crescents, polymitus). The merozoites in this case no longer grow into schizonts, or at least not all of them, but become sexual individuals called gametocytes (fig. 80, 9-12), which only start their further development when they have reached the intestine of Anopheles. This does not take place in every case, nor with all the gametocytes which exist in the blood of patients with intermittent fever. Of those parasites which remain in the human blood the male ones (microgametocytes) soon perish, the females (macrogametocytes) persist for some long time, and perhaps at last acquire the capacity of increasing by schizogony. They might thus form merozoites which behave in the body as if they had proceeded from ordinary schizonts (fig. 80, 13c-17c). If their number increases sufficiently, in course of time the patient, who was apparently recovering, has a new series of fever attacks, or relapses, without there having been a new infection. This is the view of Schaudinn, who from researches of his own concluded that relapses were brought about by a sort of parthenogenetic reproduction of macrogametocytes. R. Ross, on the contrary, believes that in the relatively healthy periods the number of parasites in the blood falls below that necessary to provoke febrile symptoms; relapses then result merely from increase in the numbers of the parasites present in the individual. Ross’s view is now generally accepted.