The deductions to be drawn are as follows: That the helminthes like the ectoparasites multiply by sexual processes, that the entire course of development of the helminthes is rarely or never gone through in the same host as is the case with several ectoparasites, that the progeny at an earlier or later stage of development, as eggs, embryos, or larvæ, quit the host inhabited by the older generation, and almost always attain the outer world: only in Trichinella does the development take place directly in the definite host. Where the eggs have not yet developed they go through the embryonic evolution in the outer world. The young larvæ are transmitted, either still enclosed within the egg or embryonic covering, to the intermediate host or more rarely they are transferred straight to the final host. In other cases they may hatch out from their envelopes, and after a longer or shorter period of free life, during which they may partake of food and grow, they, as before, penetrate, usually in an active way, into an intermediate host, or at once invade the final host. Exceptionally (e.g., Rhabdonema), during the free life there may be a propagation of the parasitic generation, and in this case only the succeeding generation again becomes parasitic, and then at once reaches its final host. The young forms which have invaded the final host become mature in the latter, or after a longer or shorter period of parasitism again wander forth (as the Œstridæ, Ichneumonidæ, etc.), and reach the adult stage in the outer world. The young stages, during which the parasites undergo metamorphoses or are even capable of producing one or several intermediate generations, are passed in the intermediate hosts until, as a rule, they are passively carried into the final host and there complete their cycle of development by the formation of the organs of generation. This mode of development, the spending of life in two different kinds of animals (intermediate and final host), is typical of the helminthes. This is manifested in the Acanthocephala, the Cestoda, the majority of the endoparasitic Trematoda, a number of the Nematoda, and the Linguatulidæ. There are now and then exceptions, however, in which, for instance, the host and intermediate host change order (Trichinella, Hymenolepis murina).

Parasites are hardly ever inherited amongst animals.[8] According to a few statements, however, Trichinella and Cœnurus are supposed to be transmissible from the infected mother to the fœtus. Otherwise most animals acquire their parasites, especially the Entozoa, from without, the parasites penetrating either actively, as in animals living in the water, or passively with food and drink. A particular predisposition to worms is not more likely than a spontaneous origin of parasites.

Derivation of Parasites.—Doubt now no longer exists as to the derivation of the temporary and of many of the stationary ectoparasites from free-living forms. This conclusion is founded on the circumstance that not only are there numerous intermediate degrees in the manner of living and feeding between predacious and parasitic animals, but that there is more or less uniformity in their structure. The differences that exist are easily explained as consequences of altered conditions of life. The case is more difficult in regard to groups that are exclusively parasitic (Cestoda, Trematoda, Acanthocephala, Linguatulidæ, and Sporozoa), or groups that are chiefly parasitic (Nematoda), because in these cases the gulf that divides these forms from free-living animals is wider. It is true that we know that the nearest relatives of the Linguatulidæ are found amongst the Arachnoidea, and indeed in the Acarina; that, moreover, the structure and development of the Sporozoa refers them to the Protozoa, and allows some of them to be regarded as the descendants of the lowest Rhizopoda. We know that the Trematoda, and through these the Cestoda, are closely related to the Turbellaria, from which they may be traced. The Nematoda, and still more the Acanthocephala, stand apart. This is less evident, however, in the Nematoda, for there are numerous free-living members of these from which it is possible that the parasitic species may be descended. Indeed, this seems more than probable if such examples as Leptodera, Rhabdonema and Strongyloides are taken into consideration, as well as the conditions of life of free-living nematodes. These mostly, if not exclusively, spend their lives in places where decomposing organic substances are present in quantities; some species attain maturity only in such localities, and there propagate very rapidly. Should the favourable conditions for feeding be changed, the animals seek out other localities, or they remain in the larval form for some time until more favourable conditions set in. It is comprehensible that such forms are very likely to adopt a parasitic manner of life which at first is facultative (Leptodera, Anguillula), but may be regarded as the transition to true parasitism. The great advantages attached to a parasitic life consist not only in protection, but also in the supply of suitable food, and consequently in the easier and greater production of eggs, and thus fully account for the gradual passage of facultative parasitism into true parasitism. In many forms the young stages live free for some time (Strongylidæ), in others, as is the case in Rhabdonema, parasitic and free-living generations alternate; in others, again, the free period is limited to the egg stage or entirely suppressed.

Though it is possible thus to connect the parasitic with the free-living nematodes, by taking their manner of life into account, this matter presents greater difficulties in regard to other helminthes. It is true that the segmented Cestoda may be connected with and traced from the less known and interesting single-jointed Cestoda (Amphilina, Archigetes, Caryophyllæus, Gyrocotyle). Trematodes are all parasites, with the exception of one group, Temnocephalidæ, several genera and species of which live on the surface of the bodies of Crustacea and turtles of tropical and sub-tropical freshwaters. Temnocephalidæ are, nevertheless, predacious. They feed on Infusoria, the larvæ of small insects and Crustacea. So far as is known they do not nourish themselves on part of the host. They belong to the group of commensals, or more correctly, to that of the SPACE PARASITES, which simply dwell with their host and do not even take a portion of the superfluity of its food. However, space parasitism may still be regarded as the first stage of commensalism, which is again to be regarded as a sort of transition to true parasitism.

It is possible that parasitism came about in this way in the trematodes, in which connection we must first consider the turbellaria-like ancestors of the trematodes. Much can be said in favour of such a genetic relationship between turbellaria and trematodes, and hardly anything against it. It should also be remembered that amongst the few parasitic turbellaria there are some that possess clinging discs or suctorial pores, and these are only differentiated from ectoparasitic trematodes by the possession of a ciliated integument, which is found only in the larval stages of the latter.

The Acanthocephala occupy an isolated position. Most authors certainly regard them as related to the nematodes; in any case, the connection is not a close one, and the far-reaching alterations which must have occurred prevent a clear view. Perhaps the free original forms of Acanthocephala are no longer in existence, but that such must have existed is a foregone conclusion.

An explanation of the CHANGE OF HOST so frequent in parasites is more difficult than that of their descent. R. Leuckart is of opinion that the present intermediate hosts, which belong principally to the lower animals, were the original hosts of the parasites, and fostered both their larval and adult stages. It was only in course of time that the original hosts sank to the position of intermediate hosts, the cause for this alteration being that the development of parasites, especially of the helminthes, through further development and differentiation extended over a larger number of stages. The earlier stages remained in their original hosts, but the later stages sought out other hosts (higher animals). To prove this, Leuckart points out that the mature stages of the helminthes, with but few exceptions, occur only in the vertebrates which appeared later in the development of the animal kingdom, while the great majority of intestinal worms of the lower animals only represent young stages, which require transmission into a vertebrate animal before they can become mature. The few helminthes that attain maturity in the lower animals (Aspidogaster, Archigetes) are therefore regarded by Leuckart as primitive forms, and he compares them with the developmental stages of helminthes, Aspidogaster with rediæ, Archigetes with cysticercoids. He classes the nematodes that become mature in the invertebrates with Anguillulidæ, i.e., with saprophagous nematodes from which the parasitic species descend.

Leuckart therefore regards the change of hosts as secondary, so does Sabatier. The latter, however, adduces other reasons for this (lack of clinging organs and the necessity to develop them in an intermediary stage); but in this connection he only considers the Cestoda. In opposition to Leuckart, R. Moniez, however, is convinced that the migrations of the helminthes, as well as the system of intermediate hosts, represent the original order of things. Moniez traces all Entozoa from saprophytes, but only a few of these were able to settle directly in the intestine and there continue their development. These are forms that at the present day still lack an intermediate host, such as Trichocephalus, Ascaris, and Oxyuris. In most other cases the embryos, however, consisted of such saprophytes as were, in other respects, suitable to become parasites, but were incapable of resisting the mechanical and chemical influences of the intestinal contents. They were therefore obliged to leave the intestine at once, and accomplished this by penetrating the intestinal walls and burrowing in the tissues of their carriers. In this position, assisted by the favourable conditions of nutrition, they could attain a relatively high degree of development. Mechanical reasons prevented a return to the intestines, where the eggs could be deposited. Most of them doubtless died off as parasites, as also their young stages do at present when they penetrate wrong hosts. Some of them, nevertheless, passively reached the intestine of beasts of prey. Many were destroyed in the process of mastication; for a small part, however, there was the chance of reaching the intestine of a beast of prey undamaged, and there, having become larger and more capable of resistance, maturity was attained. By means of this incidental coincidence of various favourable circumstances, these processes, according to Moniez, have been established by heredity and have become normal.

This is not the place to express an opinion either for or against the various hypotheses advanced, but the existence of these diametrically opposed views alone will show the great difficulty of the question. Independently, however, it appears more natural to come to the conclusion that parasitism, as well as change of hosts, were gradual transitions.