With the exception of some of the parasitic species, an oral cavity, peristome or cytostome, is always present. It is frequently beset with cilia or provided with undulatory membranes, which help to waft the food inwards; sometimes there is an anal aperture (cytopyge) generally placed at the opposite pole of the organism. A cytopharynx fringed with cilia or sometimes with a specialized supporting apparatus is connected with the peristome. Vacuoles form round the ingested food, and in many species a constant rotation goes on in the endoplasm. Often one, and sometimes two contractile vacuoles are present, the frequency of the pulsations of which depends on the surrounding temperature. Sometimes special conducting channels lead to the vacuoles, or there are outlet channels leading to the exterior.
There is in almost every case a large nucleus (macronucleus), and lying close up to it a small nucleus (micronucleus). The form of the large nucleus varies according to the species. Numerous nuclei are not very common, but these occur in Opalina, which lives in the hind-gut of amphibia, and is also distinguished by the absence of an oral aperture.
Reproduction is effected by binary fission; less commonly, after encystment, by multiple division, or by budding. The divisions can be repeated many times, but finally cease, and then the conjugation of two specimens brings about a regeneration, particularly of the nuclei. Numerous examinations (Bütschli, Hertwig, Maupas, Calkins) have demonstrated that after two individuals have associated by homologous parts of the body, the micronucleus separates from the macronucleus, becomes larger and divides twice by mitosis, so that four micronuclei are present in each one of the two individuals forming the couple. Three of these nuclei perish and become absorbed, the fourth gradually passes to the portion of protoplasm connecting the two conjugants, which has originated by absorption of the cuticle at the point of contact of the conjugants. After a further division one micronucleus of each conjugant passes over into the other conjugant, and fusion ensues between the two micronuclei of each individual. Complicated changes and divisions may occur, but only the main principles can be noted here. A new nuclear body is thus formed in each conjugant, and soon divides into two. Of the segments thus produced one becomes a micronucleus, and one or several of the others, as the case may be, form or amalgamate into a new macronucleus, the old macronucleus usually perishing or becoming absorbed during the conjugation. Usually, sooner or later, the two conjugants separate, or may have separated already, and again multiply independently by fission until a series of divisions by simple fission is again followed by conjugation. The theoretical significance of conjugation cannot be dealt with fully here. It may be remarked, however, that the macronucleus plays no part in it, but governs entirely the metabolism of the Infusorian, whereas the micronucleus is essentially a generative nucleus from which macro- and micro-nuclei are again and again produced.
Encystment amongst the Infusoria is very general, and is essentially a means of protection when the surrounding medium dries up. Doubtless these cysts are frequently carried long distances by the wind, which explains the wide geographical distribution of most species. Also, multiplication often takes place in the encysted condition.
Some Infusoria live a free life, others are sedentary; the latter form colonies in fresh as well as in salt water. Numerous species are parasites of various lower and higher animals,[245] and a few also are parasitic in man.
The Prague zoologist, v. Stein, introduced a classification of the Infusoria that has been almost universally adopted. It is founded on the different position of the cilia on the body. Though, no doubt, artificial, it is a convenient system. Bütschli has compiled a better one.[246] But for our purpose Stein’s system is sufficient:—
Order 1. Holotricha, Infusoria with cilia that are evenly distributed over the entire body.
Order 2. Heterotricha, ciliated all over like the Holotricha, but having stouter cilia about the peristome.
Order 3. Hypotricha, only ciliated on the ventral surface.