Fig. 118.—Nycto­therus africa­nus. (After Castel­lani.)

G. Lindner, in Cassel, studied certain peritrichal Infusoria (stalkless Vorticella), and connected them, probably incorrectly, with the most varied diseases of man and domestic animals, even with Sarcosporidia of pigs. It may be mentioned that according to a communication by letter from Schaudinn, Vorticella may be found in freshly evacuated fæces, but always only after the administration of a water enema. In spite of this, several other investigators mention Vorticellæ as intestinal parasites of man.

The Chilodon dentatus (Ehrenberg) recorded in 1903 by J. Guiart as a parasite of man, which may be found in all infusions, can hardly have lived in the man from whose fæces it was cultivated, but may represent a chance admixture both in the fæces and the cultivations. C. uncinatus was also found as a chance parasite of man by Manson and Sambon. According to Doflein[250] (1911) certain Chilodon-like organisms have been found by Selenew in prostate secretions in gonorrhœa. Other species of the genus Chilodon are known, but only as ectoparasites (e.g., Chilodon cyprini, Moroff, 1902, from the skin and gills of diseased carp).

A number of other parasitic Ciliates are known, among which Ichthyophthirius multifiliis, destructive to fish, is important. It lives in the skin and the layers immediately below it, forming small whitish pustules which may become confluent. The pustules are most common on the head and fins, but occur also on the eyes and gills of the host. The young parasite, which is one of many formed in a cyst, is very small. At first it is free swimming, but soon attaches itself to the skin of a fish. It bores inwards and becomes surrounded by the irritated skin. There it attains a relatively large size, being 500 µ to 750 µ and occasionally more in diameter. The body has a rounded terminal mouth, short cytopharynx and a number of minute contractile vacuoles. The macronucleus is large and horseshoe-shaped; the small micronucleus is only seen in the very young animal. When full grown, the organism encysts and forces its way to the surface and bursts through, leaving a small, gaping wound behind. The cyst sinks to the bottom of the water, nuclear multiplication occurs and a number of young parasites are produced, which leave the cyst and either attack new hosts or else perish.

Opalina ranarum, parasitic in the rectum and urinary bladder of frogs and toads, shows great degradation and simplification due to parasitism, possessing no separate micronuclei, no cytostome, cytopharynx or cytopyge. It has many macronuclei, and is a large parasite. During summer and autumn nuclear multiplication followed by division of the body occurs, the process being repeated after the daughter forms have grown to the size of their parent. In spring, the Opalina divide rapidly, but do not grow much before dividing again. Finally, tiny forms, containing three to six nuclei, encyst and pass from the host with the fæces. As these latter are greedily devoured by tadpoles, the Opalina gain new hosts in which they develop.

THE CHLAMYDOZOA.

The name Chlamydozoa was proposed by Prowazek in 1907 for a number of minute, problematic organisms (fig. [119]) believed to be the causal agents of certain diseases in man and animals, such as vaccinia and variola, trachoma, inclusion blenorrhœa in infants, molluscum contagiosum, and bird epithelioma contagiosum. Other diseases possibly due to Chlamydozoa[251] are hydrophobia, measles, scarlet fever, foot-and-mouth disease, the “Gelbsucht” disease of silkworms, and perhaps even typhus (Prowazek, 1913). The subject is difficult and controversial and can only be briefly discussed here. It is known that the viruses in all these diseases can pass through ordinary bacterial filters, that is, they belong to the group of “filterable viruses.” At such periods the organisms are extracellular or free. It is also known that in many of these cases the virus produces definite and characteristic reaction-products or cell-inclusions in the infected cells, during the intracellular phase of the life-history of the organism. As the organisms to be considered are problematic, it will be convenient to summarize their history:—

(1) Cell-inclusions, usually named after their discoverers, have been found in certain diseases, thus: In vaccinia Guarnieri’s bodies, in scarlet fever Mallory’s bodies, in hydrophobia Negri’s bodies, in trachoma Prowazek’s bodies occur.

(2) At first these characteristic cell-inclusions were considered to be actual parasitic organisms causing the diseases in question. The bodies received zoological names and attempts were made to work out their supposed development cycles. The supposed parasites of vaccinia and variola were referred to a so-called genus Cytoryctes, those of hydrophobia to Neuroryctes, of scarlet fever to Cyclasterium, while those of molluscum contagiosum were referred to the Coccidia. Calkins in 1904 studied in detail the cell-inclusions of vaccinia and small-pox, calling them Cytoryctes variolæ, Guarnieri. Calkins considered that in the stratified cells of the epidermis they passed through two cycles, the one cytoplasmic, the other intranuclear. The first is the vaccinia cycle, the second the pathogenic (intranuclear) variola cycle. It is hardly necessary to follow all Calkins’ stages here.