Fig. 129.—Miracidium of Fasciola hepatica that has just hatched from the egg, with a distinct cutic­ular cili­ated epi­the­lium. Magni­fied. (From Leuckart.)

(2) Formation of the Ova.—The ovarian cells arising from the ovary first become mature after their entry into the oötype by the formation of three polar bodies, fertilization then taking place. At the same time as the ovarian cell a number of yolk cells from the vitellarium and secretion, drop by drop, from the shell gland reach the oötype.[262] The shell is then formed during the generally active contractions of the oötype walls and then passes on into the uterus. In the uterus of the endoparasitic trematodes the eggs accumulate more and more, often in large quantities, while in ectoparasitic species generally only one or some few eggs can be found. The completed ova are of various forms and sizes. They are mostly oval, at all events in the digenetic trematodes, and the yellowish or brown shell is provided with an opening at one pole which is closed by a watch-glass-shaped lid (operculum). Appendages (filaments) on the shell—at one or both poles—are uncommon, but are the rule in the ova of the Monogenea (ectoparasitic species).

(3) Deposition of the Ova.—Soon after their formation, the Monogenea (ectoparasitic trematodes) deposit round the place of their attachment on the skin or the gills or other organs of their hosts, eggs which attach themselves by means of their filaments. The embryonic development thus takes place outside the parent. This also holds good for the eggs of many endoparasitic species, although as a rule in these the eggs are always retained for a longer time in the uterus. Moreover, they usually here undergo a part or a whole of their development, and are eventually deposited in those organs in which the adult forms are parasitic, but this is not always the case, as the egg, e.g., of F. hepatica appears in bile (and fæces) quite unchanged. By the natural passages they eventually get out of the body, and in cases where such do not exist, as in the case of the blood-vessels, the eggs pass out by means of the kidneys.

(4) The embryonic development, after irregular segmentation of the ovum into a number of blastomeres, leads to the formation of a solid blastosphere or morula, which is surrounded by a cellular investing membrane (yolk envelope), while the principal mass of the cells forms the embryo, which uses for its nourishment the yolk cells, which have in the meantime disintegrated (cf. footnote, p. [223]). Usually, after the ova have reached water the embryos hatch out, leaving the yolk envelope in the egg-shell; in other cases, however, the embryos only hatch out after having been subjected to the influence of the intestinal juices, that is to say, in the intestine of an intermediate host which has ingested with its food the ova that have escaped from the primary host.

(5) The post-embryonic development of the Trematodes is accomplished in various ways; the process is the most simple in the ectoparasitic species (Monogenea), the young of which should certainly be regarded as larvæ, because they possess characteristics (cilia, simple gut, etc.) that are lacking in the adult worms, but which, nevertheless, pass into the adult state direct after a relatively simple metamorphosis. In the Holostomata,[263] a group found chiefly in the intestine of aquatic birds, and which rarely occur in other vertebrates, the ova develop in water. The young are ciliated all over, and, after having entered an intermediate host (leeches, molluscs, arthropods, amphibians, fishes) living in the water, they undergo a metamorphosis into a second larval stage; they then encyst and await transmission into the final host, where they become adult Metastatic trematodes, i.e., trematodes without asexually produced generations (p. [229]).

Fig. 130.—A group of cercariæ of Echi­no­sto­ma sp. (from fresh water). 25/1.

In the remaining so-called digenetic trematodes (p. [230]) one or two asexual generations interpose between the miracidium and terminal stage, so that quite a number of adult worms may originate from one egg. Usually the young, which are termed MIRACIDIA[264] (fig. 129), hatch in water, where they move with the aid of their cilia. Sooner or later they penetrate into an intermediate host, which is always a snail or a mussel, and while certain of their organs disappear, they grow into a gutless germinal tube (SPOROCYST, fig. 131). These are simple elongated sacs with a central body cavity. They may or may not have excretory tubules. In these, according to the species, the larval stages (CERCARIÆ) that will ultimately become adult worms are produced, or another intermediate generation is first formed, viz., that of the REDIÆ[265] (figs. 132, 133), which are always provided with an intestine, and these then give rise to cercariæ (figs. 130, [134]). The cercariæ, as a rule, leave their host and move about in the water with the assistance of their rudder-like tails. After a little time, however, they usually again invade an aquatic animal (worms, molluscs, arthropods, fishes, amphibians), then they lose their tails and become encysted (fig. [135]); here they wait until they attain, together with their host, the suitable terminal host, and in this new situation they establish themselves and reach maturity. Or, again, the cercariæ may themselves encyst in water or on foreign bodies (plants) and wait until they are taken up directly by the terminal host, e.g., sheep.