Fig. 259.—Echinococcus multilocularis in the liver of the ox. Natural size. (After Ostertag.)
Hardly anything positive is known with regard to the development of the alveolar echinococcus; its peculiar conformation is attributed by some to enormous infection of oncospheres, by others to the abnormal situation of one oncosphere; a few authors ascribe it to infection of lymphatic vessels, others to infection of the biliary ducts or to peculiarities of the surrounding hepatic tissue; Leuckart ascribes it to a grape-like variety of form which continues budding; a few more recent authors consider multilocular echinococcus to be specifically different from unilocular echinococcus, and therefore also different the species of Tænia arising from them. Melnikow-Raswedenkow is also of this opinion. According to this author the oncospheres infect the lumen of a branch of the portal vein in Glisson’s capsule of the liver and grow into an irregularly shaped formation (chitinous coil), which breaks through the vascular walls and thus forms the alveoli. So far the data coincide well with Leuckart’s opinion of the original grape-like form of the Echinococcus multilocularis; according to Melnikow-Raswedenkow the “granular protoplasmic substance” (parenchymatous layer) is not only present in the interior of the loculi but also outside, and, moreover, “ovoid embryos” are supposed to develop in the chitinous coils, which, “thanks to their amœboid movements, reach the lumen of a vessel, where, under favourable circumstances, they begin to develop further,” that is to say, they become “chitinous cysts with fantastic outlines,” or also “single-chambered chitinous cysts”; scolices may develop in both. Dévé, however, considers that these embryos are only prolongations of the protoplasmic layer which secondarily cuticularize.
The multilocular echinococcus, which in man produces a severe disease and almost always leads to premature death, infects most frequently the liver, but may also be found primarily in the brain, the spleen and the suprarenal capsule; from the liver by means of metastasis it may reach the most various organs, especially those of the abdomen, but also the lungs, the heart, etc. Up to 1902, 235 cases have been described and up to 1906, 265, being 70 from Russia, 56 from Bavaria, 32 from Switzerland, 30 from the Austrian Alps, 25 from Würtemberg; the remaining cases are distributed over Central Germany, Baden, Alsace, France, Upper Italy, North America. In some the origin is doubtful; in any case after Russia, the mountainous South of Europe is the principal region of distribution. As to the domesticated animals, the same parasite is found principally in the ox (according to Meyer, in Leipzig, in 7 per cent. of the oxen affected with echinococcus); it is rarer in the sheep and very scarce in the pig.
It has already been mentioned above that recently the multilocular echinococcus has been stated to be specifically different from hydatid or unilocular echinococcus. To this may be added the fact that Mangold, who fed a young pig with oncospheres of a Tænia reared from the multilocular echinococcus, found two growths in the liver four months later, which he took to be E. multilocularis, and consequently one has to assume the existence of two different worms. The chief defender of this view, already put forward by Vogler, Mangold, and Müller, is Possett. He bases his opinions on (1) the more restricted distribution of the multilocular hydatid, the former occurring in districts where only cattle are raised, the latter where sheep-breeding is established; (2) that those engaged in looking after sheep are attacked by multilocular, whereas those looking after cattle are attacked by unilocular hydatid; (3) that among the cases of unilocular hydatid occurring in the distribution areas of multilocular hydatid no transitions between the two forms are observed; (4) on the difference in the hooks both in the hydatid as well as in the Tænia stage; the hooks of Tænia echinococcus are plump, sharply curved, and have a short posterior root process the length of which is to that of the total length as 1 to 4·7, whereas on the contrary the hooks of the alveolar echinococcus are more slender, slightly bent, and have a long posterior root process (1 to 2·5); and (5) on the form of the uterus, which in the alveolar Tænia has the form of a spherically distended sac anteriorly.
Serum Diagnosis of Echinococcus.
(1) Precipitin Reaction.—Mix equal parts of hydatid fluid (of the sheep) and serum of patient. Keep at 37° C. The reaction is not decisive as it may be given by normal sera.
(2) Complement Deviation.—Required: (1) Hydatid fluid of sheep (antigen), (2) guinea-pig complement, (3) patient’s serum, (4) red cells of sheep, (5) hæmolytic serum (of rabbit) against sheep’s red cells, (6) 0·8 per cent. salt solution. Mix the antigen + patient’s serum (heated) + complement + salt solution at 37° C. for one hour. Add red cells of sheep + hæmolytic serum. Allow to stand for half an hour at 37° C. It is imperative to make adequate control observations. An example will indicate the method. Salt solution 1·3 c.c. + patient’s serum (heated) 0·2 c.c. + hydatid fluid 0·4 c.c. + complement 0·1 c.c. of serum diluted to a quarter strength + hæmolytic serum and red cell emulsion 1 c.c. Result: no hæmolysis, i.e., the patient’s serum contains specific (echinococcus) antibodies.