Stitt (1914) writes that “there now seems to be a tendency to use the alkaloid itself instead of its salts, it having been found that the alkaloid and its very insoluble tannate are absorbed from the digestive tract equally as well as the soluble salts.” Euquinine or ethylcarbonate of quinine contains 81 per cent. of quinine, but is expensive.

During malarial attacks, constipation must not be allowed. Headache can be relieved by cold applications, and perspiration must be encouraged in the early stage by hot tea, warm lime drinks, etc. After bad attacks, a change to a cooler climate is desirable, but the quinine treatment must not be discontinued.

Preventive measures take two main forms, directed respectively against the malarial parasites in man, and against the mosquitoes that convey the parasite from man to man.

With regard to man, houses should be built away from low-lying marshy ground, and kept free from vegetation such as grass or brush which furnishes shelter to the mosquitoes. In the tropics, the chief reservoirs of the malarial parasites are the native children, hence European quarters should be away from native dwellings as far as possible. Mosquito nets, having twenty to twenty-four meshes per square inch, should be used invariably, and houses should be screened. Malaria-conveying mosquitoes bite chiefly towards evening. Quinine treatment for preventive purposes is important. A dose of 5 gr. of quinine daily, with a dose of 10 gr. on the seventh day (Castellani), is efficacious. Some workers, however, recommend a large dose (15 gr.) on two consecutive days every eight or ten days for three months, while others recommend 10 gr. twice a week. Celli administered 3 gr. of quinine morning and evening.

The second line of attack is directed against mosquitoes, especially Anophelines, on the lines so well set forth by Sir Ronald Ross.[456] The accumulation of small quantities of water in various vessels, many of them unnecessary, should be prevented, as Stegomyia (Culicines) breed in such receptacles. Anophelines breed in small pools. All drinking water and household vessels, water-butts and cisterns must be effectively screened with wire gauze. Cesspools, etc., must also be screened, and they, and all collections of water, should be oiled with crude petroleum sprays every week or ten days, or fortnight according to some workers. The petroleum is a good larvicide and suffocates the Anopheline larvæ, while its presence renders the site obnoxious to the adult mosquitoes. The amount of crude petroleum or kerosene will vary according to the locality concerned, due regard being paid to its powers of spreading on the surface treated. Different authorities have used different quantities, such as 1 oz. of oil to 1 square yard or to 15 square feet. Others have used 1 pint of the petroleum to a circle of 20 feet in diameter, while  1/2 pint for every 100 square feet of surface has also been recommended. The larvicide used so successfully in Panama consisted of:—

Average mixture

Crude carbolic acid (containing 15 per cent. phenol)

300

gallons
Caustic soda

30

lb.
Resin

200

lb.

One part of this mixture in 5,000 parts of water containing mosquito larvæ destroys them within five minutes; 1 part in 8,000 of water kills larvæ in thirty minutes. Small fish, such as the “millions” fish, that feed on the larvæ, can be introduced into collections of water and are of local service. Ducks may also act as destroyers of larvæ. The growth of water-weeds and rank vegetation, that affords shelter to the larvae, must be prevented as far as possible.

Wherever possible hollows should be filled up, swamps and roads should be well drained. Much good has followed the use of such measures in Panama, Egypt, British Guiana and other places. The ideal conditions for malaria reduction appear to consist in a combination of general quinine prophylaxis with anti-mosquito measures.

VII.—BALANTIDIAN DYSENTERY.

This disease is also known as ciliate or ciliary dysentery. The chief causal agent is Balantidium coli. Others are Balantidium minutum, Nyctotherus faba, etc. (see pp. 200–206).