In consequence of their mode of life, all these temporary parasites live on the external surface of the body of their host, though more rarely they take up their abode in cavities easily accessible from the exterior, such as the mouth, nose and gills. They are therefore frequently called Epizoa or Ectoparasites; but these designations do not cover only the temporary parasites, because numerous epizoa (as for instance the louse) are parasitic during their entire life.
In contradistinction to these temporary parasites, the permanent parasites obtain shelter as well as food from their host for a long period, sometimes during the entire course of their life. They do not seek their host only when requiring nourishment, but always remain with it, thus acquiring substantial protection. The permanent parasites, as a rule, live within the internal organs, preferably in those which are easily accessible from the exterior, such as the intestine, with its appendages. Nevertheless, permanent parasites are also found in separate organs and systems, such as the muscular and vascular systems, hollow bones and brain, while some live on the outer skin. Here again, the terms Entozoa and Endoparasites do not include all stationary parasites; to the latter, for instance, the lice belong, which pass all their life on the surface of the body of their host, where they find shelter and food and go through their entire development. The ectoparasitic trematodes, numerous insects, crustacea, and other animals live in the same manner.
All “Helminthes,” however, belong to the group of permanent parasites. This term is now applied to designate certain lowly worms which lead a parasitic life (intestinal worms); but they are not all so termed. For instance, the few parasitic Turbellaria are never classed with the helminthes, although closely related to them. The turbellarians, in fact, belong to a group of animals of which only a few members are parasitic, whereas the helminthes comprise those groups of worms of which all species (Cestoda, Trematoda, Acanthocephala), or at least the majority of species (Nematoda), are parasitic. Formerly the Linguatulidæ (Pentastoma) were classed with the helminthes because their existence is also endoparasitic, and because the shape of their body exhibits a great similarity to that of the true helminthes. Since the study of the development of the Linguatulidæ (P. J. van Beneden, 1848, and R. Leuckart, 1858) has demonstrated that they are really degenerate arachnoids, they have been separated from the helminthes.
It is hardly necessary to emphasize the fact that the helminthes or intestinal worms do not represent a systematic group of animals, but only a biological one, and that the helminthes can only be discussed in the same sense as land and water animals are mentioned, i.e., without conveying the idea of a classification in such a grouping. It is true that formerly this was universally done, but very soon the error of such a classification was recognized. Still, until the middle of last century, the helminthes were regarded as a systematic group, although C. E. v. Baer (1827) and F. S. Leuckart (1827) strenuously opposed this view. Under the active leadership of J. A. E. Goeze, J. G. H. Zeder, J. G. Bremser, K. A. Rudolphi and F. Dujardin, the knowledge of the helminthes (helminthology) developed into a special study, but unfortunately it lost all connection with zoology. It required the intervention of Carl Vogt to disestablish the helminthes as one class of animals, by uniting the various groups with those of the free-living animals most closely related to them (Platyhelminthes, Nemathelminthes).
Permanent parasitism in the course of time has caused animals adopting this mode of life to undergo considerable, sometimes even striking, bodily changes, permanent ectoparasites having as yet undergone least alteration. The latter sometimes bear so unmistakably the likeness to the group to which they belong, that even a superficial knowledge of their structure and appearance often suffices for the recognition of their systematic position. For instance, though the louse, like many decidedly temporary parasites, has lost its wings—a characteristic of insects—in consequence of parasitism, yet nobody would deny its insect nature; such also occurs in other temporary parasites (Cimex, Pulex). On the other hand, the changes in a number of permanent ectoparasites (such as parasitic Crustacea) are far more considerable, and correspond with those that have occurred in permanent endoparasites.
These alterations depend partly on retrogression and partly on the acquisition of new peculiarities. In the former case, the change consists in the loss of those organs which have become useless in a permanent parasitic condition of existence, such as wings in the louse, and the articulated extremities seen in the larval stage of parasitic Crustacea. The loss of these organs goes hand in hand with the cohesion of segments of the body that were originally separate, and alterations in the muscular and nervous systems. In the same manner another means of locomotion is lost—the ciliated coat—which is possessed by many permanent parasites during their larval period. To all appearances, this character is not secondary and recently acquired, but represents a primary character inherited from free-living progenitors, and still transmitted to the altered descendants, because of its use during the larval stage (e.g., the larvæ of a great many Trematodes, the oncospheres of some Cestodes). Amongst the retrogressions, the loss of the organs of sense may be mentioned, particularly the eyes, which are still present, not only in the nearest free-living forms but also in the free-living larvæ of true parasites. It is only quite exceptionally that the eyes are subsequently retained, as a rule they are lost. Lastly, in a great many cases the digestive system also disappears, as in parasitic Crustacea, in a few nematodes and trematodes, in all cestodes and Acanthocephala. There remain at most the rudiments of the muscles of the fore-gut, but these are adapted to entirely different uses.
The new characters which permanent parasites may acquire are, first of all, the remarkably manifold CLASPING and CLINGING ORGANS, which are seldom (as in parasitic Crustacea) directly joined on to already existing structures. In those instances in which organs for the conveyance of food are retained, these likewise frequently undergo transformation, in consequence of the altered food and manner of feeding. Such alterations consist, for instance, in the transformation of a masticating mouth apparatus into the piercing and sucking organs of parasitic insects.
Hermaphroditism (as in Trematodes, Cestodes, and a few Nematodes) is a further peculiarity of many permanent parasites; moreover, the association in couples that occurs, especially in trematodes, may lead to complete cohesion and, exceptionally, also to re-separation of the sexes. In many cases the females only are parasitic, while the males live a free life, or there may be in addition the so-called complementary males. Occasionally the male alone is parasitic, and in that case lives within the female of the same species, which may live free, like certain Gephyrea (Bonellia); or the female also may be parasitic, as Trichosoma crassicaudum, which lives in the bladder of the sewer rat (Mus decumanus).
We have numerous proofs that demonstrate how considerably the original features of many parasites have become changed. We need only draw attention to the aforementioned Linguatulidæ, also to many of the parasitic Crustacea belonging to various orders. In all of these a knowledge of the larval stages—in which there is no alteration, or at most only a slight degree of change—serves to determine their systematic position, i.e., the nearest conditions of relationship.