Syn.: Spirochæta obermeieri, Cohn, 1875.
This organism was discovered by Obermeier (1873) in cases of relapsing fever in Berlin. Short forms 7 µ to 9 µ long, and longer (probably adult) forms, 16 µ to 19 µ, are found in the blood. The width is 0·25 µ. Parasites 12 µ or 13 µ long are often observed.
The spirochæte is found in the blood during febrile attacks and relapses, but not during intervening periods. It can be inoculated into monkeys, rats and mice. It can live in the bed-bug, Cimex lectularius, and Nuttall has succeeded in transmitting S. recurrentis from mouse to mouse by the bites of the same bug. The French investigators Sergent and Foley (1908–9) in Algeria, and Nicolle, Blaizot and Conseil (1912) in Tunis, have shown experimentally that S. recurrentis (var. berbera) is transmitted by lice. The latter workers also demonstrated the method of infection that commonly occurs, namely, by the scratching of the skin and crushing of lice containing spirochætes on the excoriated surface of the body.
Lice as transmitting agents for relapsing fever were indicated by Mackie[154] in 1907. An epidemic among Indian school children furnished the materials.[155] It was noted that out of 170 boys, 137 were infected, and the boys were very verminous. Among the girls, 35 out of 114 suffered, and few lice were found on them. Twenty-four per cent. of the lice taken from the boys contained spirochætes as compared with 3 per cent. of those from the girls. As the epidemic died out among the boys, the lice also became fewer, and an increase in the number of cases among the girls coincided with an increase in the number of lice. Spirochætes were found in the gut, Malpighian tubules and genital organs of the lice. Mackie thought that infection of the patients was brought about by the regurgitation of the spirochætes when the lice fed, but proof of this was lacking.
In 1912, Nicolle, Blaizot and Conseil,[156] working in Tunis and using chiefly an Algerian strain of relapsing fever spirochætes (sometimes called S. berbera), showed by direct experiments that infection by means of the bites of Pediculus vestimenti and P. capitis was untenable. As many as 4,707 infected lice were fed on one man, and 6,515 on another occasion were allowed to bite a man after they had fed on a monkey heavily infected with spirochætes, yet no infection of the man followed. Examination of the lice showed that the spirochætes left the gut soon after they were ingested, and passed into the body cavity, which swarmed with spirochætes. The contents of the alimentary tract and the fæces of the lice alike were uninfective. The spirochætes did not reappear in the gut till eight days after an infective feed, but some persisted as late as the nineteenth day when kept at 28° C.
It was noted that the irritation due to the lice caused scratching, and that thereby lice became crushed on to the skin. An emulsion was made of two infected lice and rubbed on to the slightly excoriated skin of one of the above workers. Infection followed five days later. A drop of emulsion placed on the conjunctiva of the human eye produced spirochætosis after an incubation of seven days. The body contents of such lice, then, produce infection when they reach the blood by any excoriated or penetrable surface. The stages leading up to infection in nature briefly are: The irritation due to the louse bites causes scratching, and the lice are crushed on to the skin. The slight abrasion is quite sufficient to permit the entry of the parasite. The louse bite alone is harmless. Infection by way of the eye is quite probable in Africa, remembering the constant trouble due to sand, dust, insects, etc., resulting in frequent touching of the eyes.
The spirochætes occur in the body fluid of the lice and can pass in it to the adjacent organs. Thus they probably find their way into the genital organs, and into the eggs of the lice. Eggs laid twenty to thirty days after the parent became infected have retained the infection, and the larvæ issuing from such eggs must have contained some form of spirochætes, for an emulsion of either the eggs or the larvæ produced spirochætosis when inoculated into monkeys. Further details regarding the spirochætosis in the eggs of the lice and in the larvæ are needed. Hereditary infection, however, has been demonstrated, but is not very common. Sergent and Foley (1914) state that the spirochæte possesses a very small and virulent form which it assumes during apyrexial periods in man and during a period following an infecting meal in the louse. Nicolle and Blanc (1914) find that the organisms are infective in the louse just before they reappear as spirochætes. Nicolle and Blaizot found that female lice were more susceptible to spirochætes than males, four times as many females as males being infected.
Tictin (1897) found S. recurrentis in bugs recently fed on patients, and infected a monkey with the fluids of crushed bugs. Karlinski (1902) found the spirochætes in bed-bugs in infected houses. There is some other evidence to show that bugs may transmit the spirochæte in Nature. Further researches are needed regarding the relationship of bed-bugs and human spirochætosis.
Multiplication of S. recurrentis is by longitudinal and transverse division (including so-called “incurvation”), and the organism forms small, ovoid bodies (“coccoid” bodies) in the same way as S. duttoni.