Most civilized nations have agreed informally to adopt some one city as the fundamental point from which all longitudes are to be counted. Up to the present we have considered only longitude differences; but when we speak of the longitude of a city we mean its longitude difference from the place chosen by common consent as the origin for measuring longitudes. The town almost universally used for this purpose is Greenwich, near London, England. Here is situated the British Royal Observatory, one of the oldest and most important institutions of its kind in the world. The great longitude circle passing through the centre of the astronomical transit at the Greenwich observatory is the fundamental longitude circle of the earth. The longitude of any other town is then simply the angle at the pole between the longitude circle through that town and the fundamental Greenwich one here described.

Longitudes are counted both eastward and westward from Greenwich. Thus New York is in 74 degrees west longitude, while Berlin is in 14 degrees east longitude. This has led to a rather curious state of affairs in those parts of the earth the longitudes of which are nearly 180 degrees east or west. There are a number of islands in that part of the world, and if we imagine for a moment one whose longitude is just 180 degrees, we shall have the following remarkable result as to its time difference from Greenwich.

We have seen that of any two places the eastern always has the later time. Now, since our imaginary island is exactly 180 degrees from Greenwich, we can consider it as being either 180 degrees east or 180 degrees west. But if we call it 180 degrees east, its time will be twelve hours later than Greenwich, and if we call it 180 degrees west, its time will be twelve hours earlier than Greenwich. Evidently there will be a difference of just twenty-four hours, or one whole day, between these two possible ways of reckoning its time. This circumstance has actually led to considerable confusion in some of the islands of the Pacific Ocean. The navigators who discovered the various islands naturally gave them the date which they brought from Europe. And as some of these navigators sailed eastward, around the Cape of Good Hope, and others westward, around Cape Horn, the dates they gave to the several islands differed by just one day.

The state of affairs at the present time has been adjusted by a sort of informal agreement. An arbitrary line has been drawn on the map near the 180th longitude circle, and it has been decided that the islands on the east side of this line shall count their longitudes west from Greenwich, and those west of the line shall count longitude east from Greenwich. Thus Samoa is nearly 180 degrees west of Greenwich, while the Fiji Islands are nearly 180 degrees east. Yet the islands are very near each other, though the arbitrary line passes between them. As a result, when it is Sunday in Samoa it is Monday in the Fiji Islands. The arbitrary line described here is sometimes called the International Date-Line.

It does not pass very near the Philippine Islands, which are situated in about 120 degrees east longitude, and, therefore, use a time about eight hours later than Greenwich. New York, being about 74 degrees west of Greenwich, is about five hours earlier in time. Consequently, as we may remark in passing, Philippine time is about thirteen hours later than New York time. Thus, five o'clock, Sunday morning, May 1st, in Manila, would correspond to four o'clock, Saturday afternoon, April 30th, in New York.

There is another kind of time which we shall explain briefly—the so-called "standard," or railroad time, which came into general use in the United States some few years ago, and has since been generally adopted throughout the world. It requires but a few moments' consideration to see that the accidental situation of the different large cities in any country will cause their local times to differ by odd numbers of hours, minutes, and seconds. Thus a great deal of inconvenience has been caused in the past. For instance, a train might leave New York at a certain hour by New York time. It would then arrive in Buffalo some hours later by New York time. But it would leave Buffalo by Buffalo time, which is quite different. Thus there would be a sort of jump in the time-table at Buffalo, and it would be a jump of an odd number of minutes.

It would be different in different cities, and very hard to remember. Indeed, as each railway usually ran its trains by the time used in the principal city along its line, it might happen that three or four different railroad times would be used in a single city where several roads met. This has all been avoided by introducing the standard time system. According to this the whole country is divided into a series of time zones, fifteen degrees wide, and so arranged that the middle line of each zone falls at a point whose longitude from Greenwich is 60, 75, 90, 105, or 120 degrees. The times at these middle lines are, therefore, earlier than Greenwich time by an even number of hours. Thus, for instance, the 75-degree line is just five even hours earlier than Greenwich time. All cities simply use the time of the nearest one of these special lines.

This does not result in doing away with time differences altogether—that would, of course, be impossible in the nature of things—but for the complicated odd differences in hours and minutes, we have substituted the infinitely simpler series of differences in even hours. The traveller from Chicago to New York can reset his watch by putting it just one hour later on his arrival—the minute hand is kept unchanged, and no New York timepiece need be consulted to set the watch right on arriving. There can be no doubt that this standard-time system must be considered one of the most important contributions of astronomical science to the convenience of man.

Its value has received the widest recognition, and its use has now extended to almost all civilized countries—France is the only nation of importance still remaining outside the time-zone system. In the following table we give the standard time of the various parts of the earth as compared with Greenwich, together with the date of adopting the new time system. It will be noticed that in certain cases even half-hours have been employed to separate the time-zones, instead of even hours as used in the United States.