But this demonstration of Newton's law is limited strictly to the solar system itself. We may, indeed, reason by analogy, and take for granted that a law which holds within our immediate neighborhood is extremely likely to be true also of the entire visible universe. But men of science are loath to reason thus; and hence the fascination of researches in cosmic astronomy. Analogy points out the path. The astronomer is not slow to follow; but he seeks ever to establish upon incontrovertible evidence those truths which at first only his daring imagination had led him to half suspect.
If we are to extend the law of gravitation to the utmost, we must be careful to consider the law itself in its most complete form. A heavenly body like the sun is often said to govern the motions of its family of planets; but such a statement is not strictly accurate. The governing body is no despot; 'tis an abject slave of law and order, as much as the tiniest of attendant planets. The action of gravitation is mutual, and no cosmic body can attract another without being itself in turn subject to that other's gravitational action.
If there were in our solar system but two bodies, sun and planet, we should find each one pursuing a path in space under the influence of the other's attraction. These two paths or orbits would be oval, and if the sun and planet were equally massive, the orbits would be exactly alike, both in shape and size. But if the sun were far larger than the planet, the orbits would still be similar in form, but the one traversed by the larger body would be small. For it is not reasonable to expect a little planet to keep the big sun moving with a velocity as great as that derived by itself from the attraction of the larger orb.
Whenever the preponderance of the larger body is extremely great, its orbit will be correspondingly insignificant in size. This is in fact the case with our own sun. So massive is it in comparison with the planets that the orbit is too small to reveal its actual existence without the aid of our most refined instruments. The path traced out by the sun's centre would not fill a space as large as the sun's own bulk. Nevertheless, true orbital motion is there.
So we may conclude that as a necessary consequence of the law of gravitation every object within the solar system is in motion. To say that planets revolve about the sun is to neglect as unimportant the small orbit of the sun itself. This may be sufficiently accurate for ordinary purposes; but it is unquestionably necessary to neglect no factor, however small, if we propose to extend our reasoning to a consideration of the stellar universe. For we shall then have to deal with systems in which the planets are of a size comparable with the sun; and in such systems all the orbits will also be of comparatively equal importance.
Mathematical analysis has derived another fact from discussion of the law of gravitation which, perhaps, transcends in simple grandeur everything we have as yet mentioned. It matters not how great may be the number of massive orbs threading their countless interlacing curved paths in space, there yet must be in every cosmic system one single point immovable. This point is called the Centre of Gravity. If it should so happen that in the beginning of things, some particle of matter were situated at this centre, then would that atom ever remain unmoved and imperturbable throughout all the successive vicissitudes of cosmic evolution. It is doubtful whether the mind of man can form a conception of anything grander than such an immovable atom within the mysterious intricacies of cosmic motion.
But in general, we cannot suppose that the centres of gravity in the various stellar systems are really occupied by actual physical bodies. The centre may be a mere mathematical point in space, situated among the several bodies composing the system, but, nevertheless, endowed, in a certain sense, with the same remarkable property of relative immobility.
Having thus defined the centre of gravity in its relation to the constituent parts of any cosmic system, we can pass easily to its characteristic properties in connection with the inter-relation of stellar systems with one another. It can be proved mathematically that our solar system will pull upon distant stars just as though the sun and all the planets were concentrated into one vast sphere having its centre in the centre of gravity of the whole. It is this property of the centre of gravity which makes it pre-eminently important in cosmic researches. For, while we know that centre to be at rest relatively to all the planets in the system, it may, nevertheless, in its quality as a sort of concentrated essence of them all, be moving swiftly through space under the pull of distant stars. In that case, the attendant bodies will go with it—but they will pursue their evolutions within the system, all unconscious that the centre of gravity is carrying them on a far wider circuit.
What is the nature of that circuit? This question has been for many years the subject of earnest study by the clearest minds among astronomers. The greatest difficulty in the way is the comparatively brief period during which men have been able to make astronomical observations of precision. Space and time are two conceptions that transcend the powers of definition possessed by any man. But we can at least form a notion of how vast is the extent of time, if we remember that the period covered by man's written records is registered but as a single moment upon the great revolving dial of heaven's dome. One hundred and fifty years have elapsed since James Bradley built the foundations of modern sidereal astronomy upon his masterly series of observations at the Royal Observatory of Greenwich, in England. Yet so slowly do the movements of the stars unroll themselves upon the firmament, that even to this day no one of them has been seen by men to trace out more than an infinitesimal fraction of its destined path through the voids of space.