The method of direct treatment has the advantage of avoiding the occlusion of potash in other precipitates and the danger of loss on ignition. The method as used by de Roode gives results about one-tenth per cent higher than are obtained by the official processes.
262. The Calcium Chlorid Method.—Huston has proposed the addition of calcium chlorid to the solution of a fertilizer in the determination of potash, in order to furnish sufficient calcium to form tricalcium phosphate with all the phosphoric acid present, and thereby permit of the use of platinum dishes in the lindo-gladding method.[210] In testing this process de Roode found that when sufficient calcium chlorid was added to combine with all the phosphoric acid present and then ammonia added in excess and a portion of the solution filtered, no test for phosphoric acid could be obtained; but, that if in addition to the calcium chlorid and ammonia, some ammonium oxalate or carbonate was added, a filtered portion of the solution gave a test for phosphoric acid.[211] This is accounted for by the fact that the calcium phosphate, which is precipitated by the ammonia, is changed by the ammonium oxalate or carbonate into calcium oxalate or carbonate and ammonium phosphate, so that the very object for which the calcium chlorid was added is defeated by the addition of the ammonium oxalate or carbonate. In order to make the use of calcium chlorid effective it is necessary to filter the liquid from the precipitate formed by the calcium chlorid and ammonia and then add the ammonium oxalate or carbonate to the filtrate. This necessitates two separate filtrations and makes the proposed method of Huston as long as the old process.
263. Rapid Control Method for Potash Salts.—For rapid control work where great accuracy is not required Albert recommends that the finely ground substance be placed in a liter flask and about 400 cubic centimeters of water added and three cubic centimeters of hydrochloric acid.[212] After boiling, barium chlorid is added drop by drop as long as a precipitate is produced. After cooling, the flask is filled to the mark and shaken and its contents filtered through a dry filter. An aliquot portion of the filtrate is evaporated with platinum chlorid solution in a smooth porcelain dish almost to dryness and the mass treated with alcohol, filtered through a weighed filter, and well washed with alcohol. The filter is then dried in an air-bath to a constant weight. For the different kinds of potash materials on the market the following proportions are recommended:
Kainit or Carnallit.—Twenty grams in one liter: Fifty cubic centimeters of the filtrate are evaporated with forty of platinic chlorid solution. The weight of potassium platinochlorid obtained × 19.3 gives the per cent of K₂O.
Sulfate of Potash.—Fifteen grams in one liter: Twenty cubic centimeters of the solution are evaporated with fifteen of platinic chlorid. The weight of potassium platinochlorid obtained × 64.33 gives the per cent of K₂O.
Potassium Chlorid.—Ten grams in one liter: Twenty-five cubic centimeters are evaporated with fifteen of platinic chlorid solution. The weight of the precipitate obtained × 77.2 gives the per cent of K₂O.
264. Weighing the Precipitate as Metallic Platinum.—Hilgard calls attention to the difficulty of weighing the double chlorid of platinum and potash as such, although he acknowledges that in the gooch this weighing can be made with great accuracy.[213] He prefers to estimate the platinum in the metallic state and uses for this purpose a platinum crucible the inside of which, half way up from the bottom, is coated with a layer of platinum sponge, which is conveniently prepared by the decomposition of a few decigrams of the platinum double salt by inclining the crucible and rotating it during the progress of the reduction, using about a quarter of an hour in all. The platinum sponge produced in this way greatly favors the decomposition of the double salt for analytical purposes. The decomposition of the salt takes place quickly and quietly and at conveniently low temperatures.
When the decomposition is ended the crucible is strongly heated so as to hold the platinum sponge, which is produced, together sufficiently to prevent its being removed in the subsequent washing of the crucible by decantation. By the ignition at a high temperature necessary to secure this, the greater part of the calcium chlorid is volatilized. After cooling, a few drops of concentrated hydrochloric acid are placed in the crucible and if the slightest yellow color be shown the acid is evaporated and the ignition repeated, with the addition of a little oxalic acid. In most cases the slight yellow color produced comes from a trace of iron and will therefore appear again after the second ignition. The crucible is subsequently washed by repeated decantations, finally with boiling water, and after drying is ignited and weighed.
The advantage of this process is that without further trouble the reduced metal is completely freed of any salts of the alkaline earths, etc., which have been carried down with it and also from any of the uncombined sodium chlorid which may not have been washed out by the alcohol. In fact, the results obtained in this way are nearly always lower than those obtained through the direct weighing of the double salt, and the wash water which is first poured off contains, as a rule, traces of the alkaline earths and almost without exception some sodium chlorid. Correction for the filter ash is unnecessary because the ash is completely dissolved by the treatment received. The platinum sponge which is collected in the crucible in this way is removed in case it does not adhere to the sides and the crucible is then ready for the next operation.
265. Sources of Error in the Platinum Method.—In the comparative work done in the determination of potash by the members of the Association of Official Agricultural Chemists there has been noted, from year to year, marked differences in the data obtained by different analysts. Such differences often are due to personal errors, or a failure to accurately follow the directions for manipulation. Sometimes, however, they are due to sources of error in the processes employed. In the platinum method these sources of error have been long known to exist. Chief among these is the remarkable facility with which potash becomes incorporated with the precipitates of other bodies. The character and magnitude of some of these errors have lately been studied by Robinson.[214]