Iron.—For iron another aliquot portion of the original solution is taken, acidified with sulfuric evaporated to drive off hydrochloric acid, rediluted and passed through the Jones reductor described in [paragraph 112]. The filtrate is titrated with potassium permanganate solution in the usual manner.
Alkalies.—For the alkalies another aliquot portion is taken and precipitated while hot, with barium chlorid and barium hydrate, filtered, and ammonia and ammonium carbonate added to remove the excess of barium salt. Refilter, evaporate to dryness in a platinum dish, and ignite gently to expel all ammonia salts, repeat this operation after taking up with water and finally heat to constant weight. The weight obtained represents a mixture of potassium and sodium chlorids, with usually carbon derived from impurities in the ammonia. A little magnesia is often present. The potassium is estimated by means of platinum solution, and the potassium chlorid found deducted from the total weight gives the sodium chlorid. The carbon is usually unweighable, though it often looks as if present in considerable quantity. It may be estimated, however, by dissolving the mixed chlorids in weak hydrochloric acid and filtering through a gooch before making the potassium estimation. The estimation of the magnesia remaining with the mixed chlorids may be effected by evaporating the alcoholic solution remaining after the precipitation of the potassium to dryness, redissolving in water, placing the solution in a flask provided with gas tubulures, introducing hydrogen, and placing in the sunlight. The platinum is soon reduced, leaving the liquid colorless. Heating facilitates the reaction. Displace the hydrogen by a current of carbon dioxid, filter, concentrate the solution and precipitate the magnesia by sodium phosphate in the usual manner.
Phosphoric Acid.—It is best to determine the phosphoric acid directly in an aliquot part of the first filtrate from the hydrochloric acid solution of the ash obtained as described under the determinations of sand, silica and carbon. When there is not enough of the material for this, the precipitate of ferric phosphate may be dissolved and the phosphoric acid determined after separation with ammonium molybdate.
Sulfuric Acid.—Fifty cubic centimeters of the original hydrochloric acid filtrate, obtained as described under the determinations of sand, silica and carbon, are heated to boiling, and the sulfuric acid thrown out by the gradual addition of barium chlorid. During the precipitation the mixture is kept at the boiling temperature, but taken from the lamp and the precipitate allowed to settle from time to time until it is seen that an additional drop of the reagent causes no further precipitate. The barium sulfate is collected, dried, and weighed in the usual manner.
Chlorin.—Dissolve from one to five grams of the ash in nitric acid in very slight excess, or in water. If the solution be made in nitric acid the excess must be neutralized if the chlorin be determined volumetrically; and if the solution be in water, nitric acid must be added if the determination be gravimetric.
The volumetric determination is accomplished in the usual manner with a standard silver nitrate solution, using potassium chromate as indicator. The gravimetric determination is effected by precipitation with silver nitrate, collecting, washing, and drying at 150° the silver chlorid obtained.
Carbon Dioxid.—The carbon dioxid is most conveniently estimated in from one to five grams of the ash, according to its richness in carbonates, by the apparatus described in volume first, or some similar device.[252]
298. Official Method for Determinations of the Alkalies.—Evaporate the filtrate and washings from the sulfuric acid determination, [paragraph 297], in a porcelain dish to dryness, redissolve in about fifty cubic centimeters of water and add milk of lime, or barium hydroxid solution, which must be perfectly free from alkalies, until no further precipitation is produced, and it is evident there is an excess of calcium hydroxid or barium hydroxid present; boil for two or three minutes, filter hot, and wash thoroughly with boiling water, precipitate the lime and baryta from the filtrate with ammonia and ammonium carbonate, filter, evaporate the filtrate to dryness in a porcelain dish, and drive off the ammonia salts by heat below redness.[253] When cold, redissolve in fifteen or twenty cubic centimeters of water, precipitate again with a few drops of ammonia and ammonium carbonate solution, let stand a few minutes on the water-bath and filter into a tared platinum dish and evaporate to dryness, expel the ammonia salts by heating to just perceptible dull redness, weigh the potassium and sodium chlorids obtained and determine the potassium chlorid with platinic chlorid as usual.
The potassium may also be determined by the perchlorate method, or the total chlorin be determined volumetrically, and the relative percentages of potassium and sodium chlorids calculated by the usual formula: Or multiply the weight of chlorin in the mixture by 2.1035, deduct from the product the total weight of the chlorids and multiply the remainder by 3.6358. The product expresses the weight of the sodium chlorid contained in the mixed salts. The indirect method is only applicable when there are considerable quantities of alkalies present and where they exist in approximately molecular proportions. It is therefore a process rarely to be recommended in ash analysis.
299. Statement of Results.—The bases which are found present in the ashes of wood and other vegetable tissues exist without doubt before incineration, chiefly in combination with inorganic acids. Even the phosphorus and sulfur which after ignition appear as phosphates and sulfates, have previous thereto existed in an organic form to a large extent. The silica itself is profoundly modified in the organism of the growing plant and doubtless does not exist there in the purely mineral form in which it is found in the ash. During the progress of incineration, with proper precautions, all the phosphorus and sulfur are oxidized and appear as phosphoric and sulfuric acids. The silica is reduced to a mineral state, and if a high heat be employed silicates are formed. The organic salts of lime, magnesia and other bases at a low temperature are converted into carbonates, and if a higher temperature be used, may appear as oxids. The organic compounds of alkalies will be found in the ash as carbonates. It would be useless, therefore, to try to state the results of ash analysis in forms of combination similar to those existing in the original vegetable tissues. It is not certain even that we can in all cases judge of the form of combination in which the different constituents exist in the ash itself. It is therefore to be preferred in a statement of ash analysis to give the bases in the form of oxids, and the sulfur and phosphorus in the form of anhydrids, and the chlorin in its elementary state. In this case an equivalent amount of oxygen to the chlorin found must be subtracted from the total. If an attempt be made to combine the acid and basic elements the chlorin should first be united with sodium, and any excess thereof with potassium, and the amount of base so combined calculated to oxid and deducted from the total of such base or bases present. The carbonic acid present should be combined first with alkalies after the chlorin has been supplied. The phosphoric acid should be combined first with the iron and afterwards with lime or magnesia. In all cases the percentages should be based upon the ash, after the carbon and sand have been deducted, or it is also convenient at times to throw out of the results the carbon dioxid and to calculate the other constituents to the ash free of that substance. In determining the quantities of mineral matters removed from soil by crops, the ash should be determined with great care, freed of carbon and sand, and the calculations made on the percentage thus secured. In all statements of percentages of the essential constituents of ash, as regards fertilizing materials, it should be specified whether the percentage is calculated on a crude ash, the pure ash, that is free of carbon and sand, or upon a basis excluding the carbon dioxid. For the purpose of fertilizer control, the analyst and dealer will be satisfied, as a rule, with the determination of the percentages of phosphoric acid and potash alone. To the other constituents of an ash is not assigned any commercial value.