In this laboratory a white pyrophosphate is easily obtained by treating the precipitate on the gooch after washing free of chlorids with a drop or two of ammonium nitrate. The ignition is commenced very gently at first and afterwards when the mass is white the blast is used.
If the ignited residue be gray it may sometimes be whitened by moistening with a drop or two of nitric acid, burning at a very low temperature, followed by the blast. There is no appreciable difference in weight between a gray and white pyrophosphate.
62. Determination of Phosphoric Acid and Nitrogen in the Same Solution by Treatment with Sulfuric Acid and Mercury.—Fertilizing materials which contain organic nitrogen and phosphoric acid, such as bones, are of such a nature that it is often difficult to obtain a fair sample of them in quantities suited to the direct determination; viz., about one gram. Thus it often becomes important to take a much larger quantity of the material, to bring it into solution and to take an aliquot part thereof. It may also often happen that it is important to determine the phosphoric acid in the same sample which has been used for the determination of the nitrogen by moist combustion with sulfuric acid and mercury. In this connection, however, it is somewhat difficult to avoid the precipitation of some of the mercury with the phosphoric acid.
The mercuric sulfate which is produced by the Kjeldahl method is not precipitated in the presence of ammoniacal solution of ammonium citrate, but there may be small quantities of mercurous salts present or some finely divided metallic mercury which may contaminate mechanically the phosphate precipitate. These disturbing influences may be removed by previous treatment with sodium chlorid. If from fifty to sixty cubic centimeters of sulfuric acid have been used for the solution and oxidation and this be made up to half a liter, it will be sufficiently dilute to permit an almost quantitative separation of the mercurous chlorid produced by treatment with sodium chlorid.
Neubauer, who has proposed this method, finds that when sodium chlorid is used previous to the precipitation of the phosphoric acid, a precipitate of ordinary size contains, at most, only one milligram of mercury, while without the use of sodium chlorid as much as four milligrams may be found. The details of the method employed by Neubauer are as follows:
Ten grams of the fertilizing material are placed in a half liter flask with from fifty to sixty cubic centimeters of strong sulfuric acid, two grams of mercury, and a little paraffin to prevent foaming. The oxidation is carried on as usual in the Kjeldahl method. The liquid, after cooling, is diluted with water and one cubic centimeter of a citrate solution of sodium chlorid added, cooled, filled to the mark, filtered, and fifty cubic centimeters taken for the determination of the phosphoric acid, according to the citrate method and the same quantity for the determination of the ammonia by distillation.
THE CITRATE METHOD.
63. General Principles.—It has been seen that in the molybdic method there is introduced a process at considerable cost, both of reagents and time, having for its object the separation of the phosphoric acid from all the other acids and bases which may have been present in the original sample. The phosphorus is thus obtained in composition with molybdenum and ammonium in a form easily soluble in ammonia, from which it can be accurately separated by means of a soluble salt of magnesia.
The citrate method has for its object the suppression of this intermediate step and the determination of the phosphoric acid by direct precipitation in presence of iron, lime, and alumina. The principle on which it is based rests on the well-known power of an alkaline ammonium citrate to hold in solution the salts of iron, alumina, and lime, while at the same time it permits of the separation of phosphoric acid, as ammonium magnesium phosphate. In no case can the citrate method be regarded as an exact analytical process, but large experience has shown that the errors of the method are compensatory and that it affords a good and ready method for fertilizer control.
When phosphoric acid solutions which contain no iron, lime, alumina, or manganese, are precipitated in presence of ammonium citrate the results obtained vary markedly with the quantity of magnesia mixture employed. Grupe and Tollens[48] were the first to point out that a portion of the phosphoric acid might remain in solution, but that the precipitate might contain a sufficient excess of magnesia to compensate for the loss. It has been further shown by Glaser[49] that a portion of the phosphoric acid may be lost by volatilization in the citrate method. When the ignition is carried on in a crucible where the cover is coated with magnesia to intercept the volatilized acid, a considerable quantity of it can be recovered by the molybdic method.