69. History and Manufacture.—The basic process for the manufacture of Bessemer steel is known in Europe as the Thomas or Thomas and Gilchrist process, and the slags rich in phosphate, one of the waste products of the process, are known by the same name. In this country all the phosphatic slags which have been made in the manufacture of steel have been obtained working under the patents of Reese, and, when prepared for the market, are known as odorless phosphate. The only place where these slags have been made in this country is Pottstown, Pennsylvania. In Europe they are extensively manufactured, in England, France, and Germany, and their use for agricultural purposes has increased until it is quite equal to that of superphosphates.

The quantity of basic slag manufactured in Germany in 1893 was 750,000 tons; in England 160,000; in France 115,000, making the total production of central Europe about 1,000,000, a quantity sufficient to fertilize nearly 5,000,000 acres.

70. Process of Manufacture.—The principle of the process depends upon the arrangement of the furnaces, by means of which the phosphoric acid in the pig iron is caused to combine with the lime which is used as a flux in the converters. A general outline of the process is as follows:

The pigs, which contain from two to four per cent of phosphorus, are melted and introduced into a Bessemer converter lined with dolomite powder cemented with coal-tar, into which has previously been placed a certain quantity of freshly-burned lime. For an average content of three per cent of phosphorus in the pig iron, from fifteen to twenty pounds of lime are used for each 100 pounds of pig iron. As soon as the melted pig iron has been introduced into the converter, the air-blast is started, the converter placed in an upright position, and the purification of the mass begins. The manganese in the iron is converted into oxid, the silicon into silica, the carbon into carbon dioxid and oxid, and the phosphorus into phosphoric acid.

By reason of the oxidation processes, the whole mass suffers a rise of temperature amounting in all to about 700° above the temperature of the melted iron. At this temperature the lime which has been added, melts, and, in this melted state, combines with the phosphoric acid, and the liquid mass floats upon the top of the metallic portion, which has, by this process, been converted into steel.

As soon as the process, which occupies only about fifteen minutes, is completed, the fused slag is poured off into molds, allowed to cool, broken up, and ground to a fine powder. For each five tons of steel which are made in this way, about one ton of basic slag is produced.

In another process, in order to make a slag richer in phosphoric acid, a lime is employed which contains a considerable percentage of phosphate. Although the slag thus produced is richer in phosphoric acid, it is doubtful whether it is any more available for plant growth than that made in the usual way with lime free from phosphoric acid. In other words, when a basic slag is made with a lime free from phosphoric acid, nearly the whole of the phosphoric acid is combined as tetrabasic calcium phosphate. On the other hand, when the lime employed contains some of the ordinary mineral phosphate the basic slag produced becomes a mixture of this mineral phosphate with the tetracalcium salt. The mineral phosphate is probably not rendered any more available than it was before.

It is easily seen from the above outline of the process of manufacture, that basic slags can have a very widely divergent composition. When made from pig iron poor in phosphorus, the slag will have a large excess of uncombined lime and consequently the content of phosphoric acid will be low. When made from pigs rich in phosphorus there may be a comparative deficiency of lime, and in this case the content of phosphoric acid would be unusually high.

It is found also that the content of iron in the slag varies widely. In general, the greater the content of iron the harder the slag and the more difficult to grind. If the pig iron contain sulfur, as is often the case, this sulfur is found also in the slag in combination with the lime, either as a sulfid or sulfate.

No certain formula can therefore be assigned to basic slags and the availability of each one must be judged by its chemical composition.