Hydrochloric acid is also excluded by some from the list of solvents because it dissolves so many of the foreign elements in the slag and thus tends to complicate the subsequent determination, especially of magnesia. Further than this a hydrochloric acid solution is not suited to the use of the citrate method now so commonly employed. When hydrochloric acid is used, moreover, the dissolved silica must be removed and thus the time required for making a phosphoric acid determination is much increased.

If the sample be sufficiently fine the occlusion of undissolved phosphate particles by the gypsum formed when sulfuric acid is used is not to be feared and the disturbance of volume by the gypsum is pretty nearly constant and can be allowed for. When five grams of slag are used the mean volume of gypsum in the solution is about two cubic centimeters.

76. Estimation of Total Acid.—In the determination of total phosphoric acid in a slag, twenty-five cubic centimeters of the strongest sulfuric acid are placed in an erlenmeyer having a wide neck, and with careful shaking five grams of the fine slag meal gradually added. The flask is heated over a naked flame until solution is complete. When the mass is cold it is washed into a quarter liter flask; again allowed to cool, filled with water to the mark, and two cubic centimeters of water corresponding to the volume of gypsum undissolved, are added, well mixed, and filtered. In fifty cubic centimeters of the filtrate the phosphoric acid is determined by either the molybdic or citrate methods already described.

77. Alternate Method.—The following method may also be used: Ten grams of the substance are heated with fifty cubic centimeters of concentrated sulfuric acid until white vapors have been evolved for some time. The operation lasts for about fifteen minutes and can be carried on in a half liter flask or in a porcelain dish. Without regarding the undissolved material the volume of the liquid is now made up to half a liter and filtered. The filtered liquid becomes turbid after some time through the separation of calcium sulfate, but this turbidity should not be regarded. To fifty cubic centimeters of the solution, corresponding to one gram of substance, twenty cubic centimeters of citric acid solution (500 grams citric acid to the liter) are added, and it is afterwards nearly neutralized by the addition of ten per cent ammonia and the liquid, which is warmed by this operation, cooled. There are now added twenty-five cubic centimeters of the ordinary magnesium chlorid mixture and the solution stirred until turbidity is produced, one-third of its volume of ten per cent ammonia added, and again stirred for about a minute.

Instead of the addition of the citric acid and ammonia the ammonium citrate prepared as follows, may be added: 1,500 grams of citric acid are dissolved with water, made up to three liters and five liters of twenty-four per cent ammonia and seven liters of water added. The rest of the operation is carried on in the usual manner.

78. Halle Method for Basic Slag.—The total phosphoric acid is estimated at the Halle Station by the following process:[65]

Ten grams of the substance are moistened in a porcelain dish with a few drops of water and about five cubic centimeters of a one to one solution of sulfuric acid added, and after the mass has hardened, which takes place very soon, fifty cubic centimeters of concentrated sulfuric acid are added and stirred with a glass rod until it is evenly distributed throughout the whole mass. In stirring this mixture the greatest care must be taken, otherwise the substance would remain attached to the sides of the dish, which during later heating would cause loss through spurting. The complete solution now takes place after a few hours’ heating on a sand-bath. During the cooling the jelly-like mass must be stirred with a glass rod, and after it is cool, by means of a washing-bottle, gently along the sides of the dish, water is added, and when the mixture becomes hot it is again cooled and washed into a half liter flask, which is made up to the mark at a temperature of 17°.5 and filtered. When the acid filtrate stands for some time there is often a separation of gypsum which, however, does not in any way influence the subsequent analysis, which is made in the usual manner.

Fifty cubic centimeters of the filtrate, representing one gram of the original substance, are placed in an erlenmeyer. In the case of double superphosphates which often contain large quantities of pyrophosphates, twenty-five cubic centimeters of the filtrate just obtained, equivalent to five grams of the substance, are diluted with seventy-five cubic centimeters of water, ten cubic centimeters of nitric acid of 1.42 specific gravity added, and heated on a sand-bath to convert the pyro into orthophosphates. The heating should be continued until the liquid is reduced to its original volume of twenty-five cubic centimeters. The strongly acid liquid is saturated with ammonia and with the addition of a drop of rosolic acid as an indicator, again acidified with nitric acid, and treated as with superphosphates.

79. Dutch Method for Basic Slag.—Heat ten grams of the sample with fifty cubic centimeters of sulfuric acid (1.84 specific gravity) till white vapors are evolved, shaking or stirring constantly. After cooling make the fluid up to 500 cubic centimeters with water, taking no account of the undissolved substance. Filter, and to fifty cubic centimeters of the filtrate add 100 cubic centimeters of the ammoniacal citrate solution, and after cooling, twenty-five cubic centimeters of magnesia mixture. Stir or shake for a sufficient time. After the lapse of two hours the precipitate is to be separated by filtration and treated in the usual manner.

80. Estimation of Citrate-Soluble Phosphoric Acid in Basic Slag.—Experience has shown that the manurial value of basic slags does not depend alone on their content of phosphoric acid. Slags may contain tri- as well as tetracalcium phosphate, and even this latter salt may exist in states of differing availability. In determining the availability of basic slag for manurial purposes its solubility in ammonium citrate is considered the best standard. But this solubility will evidently be influenced by the basicity of the sample, or in other words, by the quantity of lime present. A slag rich in calcium oxid would deport itself differently with a given ammonium citrate solution from one in which the lime had been chiefly converted into carbonate. If possible, therefore, all samples should be reduced to the same state of basicity before the action of any given solvent is determined.